×

Inter coupling of microinverters

  • US 10,148,093 B2
  • Filed: 06/16/2015
  • Issued: 12/04/2018
  • Est. Priority Date: 06/16/2015
  • Status: Active Grant
First Claim
Patent Images

1. A DC to AC inverter arrangement for converting Direct Current (DC) power from photovoltaic sub-arrays to Alternating Current (AC) power of a desired AC output voltage or current at output terminals and having a sinusoidal waveform of a desired frequency comprising:

  • a number of substantially identical microinverters combined in the same mechanical housing, each microinverter being configured to be powered from a respective photovoltaic sub-array via a positive and a negative DC input terminal, and configured so that the positive and negative input terminals from each sub-array get connected through a common mode filter comprising a common-mode choke to the positive and negative terminals of an associated smoothing capacitor, the positive and negative terminals of the smoothing capacitor also being connected to the positive and negative inputs of an associated H-bridge configuration of switching transistors, at least one output of each H-bridge being connected through a low pass filter to attenuate switching frequency components and to obtain a corresponding filtered H-bridge output across the microinverter output terminals, wherein one output terminal of at least a first microinverter is connected to a first output terminal of the inverter and one output terminal of at least a second microinverter is connected to a second output terminal of the inverter, and wherein the other output terminals of the microinverters are connected in parallel, series, or series parallel configuration;

    a common switching controller configured to control the switching of each H-bridge in each of said microinverters to connect a first output terminal of each H-bridge via an appropriate switching transistor of the H-bridge alternately at said desired AC output frequency to the positive and the negative H-bridge inputs from the respective terminals of said associated smoothing capacitor while controlling a second output of each H-bridge to connect via another appropriate switching transistor of the H-bridge alternately to the same or opposite polarity H-bridge input at a high switching frequency with a duty factor chosen so as to provide an effective mean value equal to a point on said sinusoidal waveform;

    wherein the outputs of said microinverters are combined at the inverter outputs to provide said desired voltage or current having said sinusoidal waveform; and

    wherein said common mode choke is a multifilar common mode choke having 2M mutually insulated parallel windings, each pair of windings being used to connect the positive and negative terminals of a sub-array to the associated microinverter'"'"'s smoothing capacitor and H-bridge, thereby sharing the same common mode choke among a number M of microinverters.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×