×

Glucose-sensing electrode and device with nanoporous layer

  • US 10,330,628 B2
  • Filed: 12/15/2017
  • Issued: 06/25/2019
  • Est. Priority Date: 11/21/2017
  • Status: Active Grant
First Claim
Patent Images

1. A glucose-sensing electrode comprising:

  • at least one electrically conductive layer comprising a surface; and

    a nanoporous layer formed on the surface and comprising a deposit of irregularly shaped bodies that are formed of numerous nanoparticles having a generally oval or spherical shape with a length ranging between about 2 nm and about 5 nm,wherein adjacent ones of the irregularly shaped bodies abut one another while forming unoccupied spaces between non-abutting surfaces or portions of the adjacent ones of the irregularly shaped bodies,wherein abutments between adjacent ones of the irregularly shaped bodies connect the adjacent ones with one another, which continues to other ones of the irregularly shaped bodies to form a three-dimensional interconnected network of irregularly shaped bodies,wherein the unoccupied spaces between non-abutting surfaces or portions of the adjacent ones of the irregularly shaped bodies are irregularly shaped and connect with other unoccupied spaces formed by other ones of the irregularly shaped bodies,wherein connections between the unoccupied spaces form a three-dimensional interconnected network of irregularly shaped spaces that is geometrically complementary to and outside the three-dimensional interconnected network of irregularly shaped bodies inside the nanoporous layer,wherein, inside the three-dimensional interconnected network of irregularly shaped bodies, at least part of the nanoparticles are adjacent to each other without an intervening nanoparticle therebetween and apart from each other to define interparticular nanopores therebetween,whereby the nanoporous layer comprises the interparticular nanopores inside the three-dimensional interconnected network of irregularly shaped bodies and further comprises the three-dimensional interconnected network of irregularly shaped spaces outside the three-dimensional interconnected network of irregularly shaped bodies,wherein at least part of the interparticular nanopores inside the three-dimensional interconnected network of irregularly shaped bodies are in a size ranging between about 0.5 nm and about 3 nm,wherein at least part of the irregularly shaped spaces of the three-dimensional interconnected network of irregularly shaped spaces are in a size ranging between about 100 nm and about 500 nm,wherein the glucose-sensing electrode does not comprise a glucose-specific enzyme,wherein the nanoporous layer is substantially free of a surfactant, wherein if any surfactant is contained in the nanoporous layer, the surfactant is in an amount smaller than 0.5 parts by weight with reference to 100 parts by weight of the deposit,wherein the nanoporous layer comprises at least one selected from the group consisting of platinum (Pt), gold (Au), palladium (Pd), rhodium (Rh), titanium (Ti), ruthenium (Ru), tin (Sn), nickel (Ni), copper (Cu), indium (In), thallium (Tl), zirconium (Zr), iridium (Ir), and one or more oxides of each of the foregoing elements.

View all claims
  • 3 Assignments
Timeline View
Assignment View
    ×
    ×