×

Apparatus and method for reducing intraocular pressure

  • US 10,342,702 B2
  • Filed: 08/14/2015
  • Issued: 07/09/2019
  • Est. Priority Date: 08/29/2014
  • Status: Active Grant
First Claim
Patent Images

1. An apparatus for draining aqueous humor from an eye for reducing or stabilizing intraocular pressure, the eye having an anterior chamber and including a cornea, a surrounding marginal limbus by which the cornea is continuous with a scleral layer and a conjunctival layer, and an external ocular surface of the eye under an eyelid, the apparatus comprising:

  • a tube extending between an inlet end and an outlet end, the inlet end being adapted to be in fluid communication with the anterior chamber of the eye, and the tube being adapted to direct a flow of aqueous humor from the anterior chamber and through the inlet end to the outlet end;

    a housing defining a cavity in fluid communication with the outlet end of the tube, the cavity being configured to receive the aqueous humor; and

    a flow control device operably engaged with the housing and configured to control the flow of the aqueous humor from the cavity to a location external to the anterior chamber, the flow control device including at least one conduit extending between the cavity and the external location, the at least one conduit configured to allow the flow of the aqueous humor from the cavity to the external location, an elongate portion of the at least one conduit formed from a flexible material configured to provide varying flow resistance as the aqueous humor continues to flow through the at least one conduit from the cavity to the external location, the flexible material defining a transverse cross-sectional area for the elongate portion of the at least one conduit,wherein in response to each of various increases in the intraocular pressure, the flexible material is configured to expand to respectively increase the transverse cross-sectional area along the elongate portion of the at least one conduit, the flow resistance decreasing as the cross-sectional area increases, andin response to each of various decreases in the intraocular pressure, the flexible material is configured to contract to respectively decrease the transverse cross-sectional area along the elongate portion of the at least one conduit, the flow resistance increasing as the cross-sectional area decreases.

View all claims
  • 2 Assignments
Timeline View
Assignment View
    ×
    ×