Multichannelbased signal transmission method and apparatus

0Associated
Cases 
0Associated
Defendants 
0Accused
Products 
0Forward
Citations 
0
Petitions 
1
Assignment
First Claim
1. A method, comprising:
 combining, by a first device, N groups of lowerorder modulation symbols into N groups of higherorder modulation symbols, wherein each of the N groups of lowerorder modulation symbols comprises M lowerorder modulation symbols, N is a positive integer greater than 1, M is a positive integer greater than 1, and wherein combining the N groups of lowerorder modulation symbols into the N groups of higherorder modulation symbols comprises;
forming an ith column vector using an ith lowerorder modulation symbol from each of the N groups of lowerorder modulation symbols, wherein i is an integer from 1 to M; and
for each integer value of s from 1 to N, determining a product of a row vector of an sth row in a matrix Q and the ith column vector as an ith higherorder modulation symbol in an sth group of higherorder modulation symbols in the N groups of higherorder modulation symbols;
determining, by the first device, N tobesent signals based on the N groups of higherorder modulation symbols; and
for each integer value of k from 1 to N, sending, by the first device to a second device, a k^{th }tobesent signal in the N tobesent signals using a k^{th }channel in N channels, wherein the first device is a user equipment and the second device is a base station, or the first device is a base station and the second device is a user equipment.
1 Assignment
0 Petitions
Accused Products
Abstract
This application provides a multichannelbased signal transmission method and apparatus. The method includes: combining N groups of lowerorder modulation symbols into N groups of higherorder modulation symbols, where an ith higherorder modulation symbol in each group of higherorder modulation symbols is obtained by combining ith lowerorder modulation symbols in all the N groups of lowerorder modulation symbols, each group of lowerorder modulation symbols includes M lowerorder modulation symbols, i=1, 2, . . . , M, N is a positive integer greater than 1, and M is a positive integer greater than 1; determining N tobesent signals based on the N groups of higherorder modulation symbols; and sending a kth tobesent signal in the N tobesent signals by using a kth channel in N channels, where k=1, 2, . . . , N.
5 Citations
No References
Hierarchical modulation for communication channels in singlecarrier frequency division multiple access  
Patent #
US 8,259,848 B2
Filed 06/09/2008

Current Assignee
Qualcomm Inc.

Sponsoring Entity
Qualcomm Inc.

METHOD AND APPARATUS FOR IMPLEMENTING HIGHORDER MODULATION SCHEMES USING LOWORDER MODULATORS  
Patent #
US 20140035693A1
Filed 04/14/2011

Current Assignee
AlcatelLucent SA

Sponsoring Entity
AlcatelLucent SA

METHOD FOR TRANSMITTING AND RECEIVING SIGNAL IN WIRELESS COMMUNICATION SYSTEM AND APPARATUS FOR PERFORMING SAME  
Patent #
US 20180076993A1
Filed 03/09/2016

Current Assignee
LG Electronics Inc.

Sponsoring Entity
LG Electronics Inc.

TRANSMISSION METHOD  
Patent #
US 20180191538A1
Filed 02/26/2018

Current Assignee
Sun Patent Trust

Sponsoring Entity
Sun Patent Trust

DATA SENDING AND RECEIVING METHOD, ANDA DATA SENDING AND RECEIVING DEVICE  
Patent #
US 20180351681A1
Filed 05/13/2016

Current Assignee
NTT Docomo Incorporated

Sponsoring Entity
NTT Docomo Incorporated

14 Claims
 1. A method, comprising:
combining, by a first device, N groups of lowerorder modulation symbols into N groups of higherorder modulation symbols, wherein each of the N groups of lowerorder modulation symbols comprises M lowerorder modulation symbols, N is a positive integer greater than 1, M is a positive integer greater than 1, and wherein combining the N groups of lowerorder modulation symbols into the N groups of higherorder modulation symbols comprises; forming an ith column vector using an ith lowerorder modulation symbol from each of the N groups of lowerorder modulation symbols, wherein i is an integer from 1 to M; and for each integer value of s from 1 to N, determining a product of a row vector of an sth row in a matrix Q and the ith column vector as an ith higherorder modulation symbol in an sth group of higherorder modulation symbols in the N groups of higherorder modulation symbols; determining, by the first device, N tobesent signals based on the N groups of higherorder modulation symbols; and for each integer value of k from 1 to N, sending, by the first device to a second device, a k^{th }tobesent signal in the N tobesent signals using a k^{th }channel in N channels, wherein the first device is a user equipment and the second device is a base station, or the first device is a base station and the second device is a user equipment.  View Dependent Claims (2, 3, 4, 5, 6, 7)
 8. An apparatus, comprising:
a processor, configured to; combine N groups of lowerorder modulation symbols into N groups of higherorder modulation symbols, wherein each of the N groups of lowerorder modulation symbols comprises M lowerorder modulation symbols, N is a positive integer greater than 1, M is a positive integer greater than 1, and wherein combining the N groups of lowerorder modulation symbols into the N groups of higherorder modulation symbols comprises; forming an ith column vector using an ith lowerorder modulation symbol from each of the N groups of lowerorder modulation symbols, wherein i is an integer from 1 to M; and for each integer value of s from 1 to N, determining a product of a row vector of an sth row in a matrix Q and the ith column vector as an ith higherorder modulation symbol in an sth group of higherorder modulation symbols in the N groups of higherorder modulation symbols; and determine N tobesent signals based on the N groups of higherorder modulation symbols; and a transceiver, configured to send to a second device, for each integer value of k from 1 to N, a k^{th }tobesent signal in the N tobesent signals using a k^{th }channel in N channels, wherein the apparatus is comprised in a first device, and wherein the first device is a user equipment and the second device is a base station, or the first device is a base station and the second device is a user equipment.  View Dependent Claims (9, 10, 11, 12, 13, 14)
1 Specification
This application is a continuation of International Application No. PCT/CN2017/088103, filed on Jun. 13, 2017, which claims priority to Chinese Patent Application No. 201610563156.X, filed on Jul. 15, 2016, and Chinese Patent Application No. 201610835470.9, filed on Sep. 20, 2016, and Chinese Patent Application No. 201611066050.5, filed on Nov. 28, 2016, and Chinese Patent Application No. 201611173792.8, filed on Dec. 16, 2016. The disclosures of the aforementioned applications are hereby incorporated by reference in their entireties.
Embodiments of this application relate to the communications field, and in particular, to a multichannelbased signal transmission method and apparatus.
A wireless local area network subsystem corresponding to the 802.11ad protocol operates on a frequency band of 60 GHz, and is mainly used to transmit wireless highdefinition audio and video signals inside a home, to provide a more complete highdefinition video solution for a home multimedia application. However, in the current 802.11ad protocol, only one channel can be used once to transmit a signal. To improve a transmission throughput, a plurality of channels can be simultaneously used to transmit a signal in a nextgeneration 802.11ad protocol. Channel aggregation is a multichannelbased signal transmission manner. When a signal is transmitted through channel aggregation, how to further improve signal transmission reliability is a problem that needs to be resolved urgently.
This application provides a multichannelbased signal transmission method and apparatus, to transmit one signal on different channels, implement signal diversity transmission, and improve signal transmission reliability.
According to a first aspect, a multichannelbased signal transmission method is provided. The method includes combining N groups of lowerorder modulation symbols into N groups of higherorder modulation symbols. An i^{th }higherorder modulation symbol in each group of higherorder modulation symbols is obtained by combining i^{th }lowerorder modulation symbols in all the N groups of lowerorder modulation symbols. Each group of lowerorder modulation symbols includes M lowerorder modulation symbols, i=1, 2, . . . , M, N is a positive integer greater than 1, and M is a positive integer greater than 1. The method also includes determining N tobesent signals based on the N groups of higherorder modulation symbols. The method also includes sending a k^{th }tobesent signal in the N tobesent signals using a k^{th }channel in N channels, where k=1, 2, . . . , N.
It may be understood that, each lowerorder modulation symbol corresponds to one constellation point in a constellation diagram, and each higherorder modulation symbol is corresponding to one constellation point in the constellation diagram. A plurality of groups of lowerorder modulation symbols are combined into a plurality of groups of higherorder modulation symbols, and the plurality of groups of higherorder modulation symbols are sent using a plurality of channels. In this way, one lowerorder modulation symbol can be transmitted on different channels, and signal diversity transmission can be implemented.
Therefore, according to the multichannelbased signal transmission method in this application, a plurality of groups of lowerorder modulation symbols are combined into a plurality of groups of higherorder modulation symbols, a plurality of tobesent signals are determined based on the plurality of groups of higherorder modulation symbols, and the plurality of tobesent signals are sent using a plurality of channels. In this way, one signal can be transmitted on different channels, signal diversity transmission can be implemented, and signal transmission reliability can be improved.
Optionally, a value of N is 2 or 3, and a value of M is 448.
With reference to the first aspect, in a first possible implementation of the first aspect, the combining N groups of lowerorder modulation symbols into N groups of higherorder modulation symbols includes: forming an i^{th }column vector by using the i^{th }lowerorder modulation symbol in each of the N groups of lowerorder modulation symbols; and determining a product of a row vector of an s^{th }row in a matrix Q and the i^{th }column vector as an i^{th }higherorder modulation symbol in an s^{th }group of higherorder modulation symbols in the N groups of higherorder modulation symbols, where s=1, 2, . . . , N.
The row vector of the s^{th }row in the matrix Q is a row vector including elements in the s^{th }row in the matrix. Generally, the first element in the s^{th }row is used as the first element of the row vector, and an i^{th }element in the s^{th }row is used as an i^{th }element of the row vector. The forming an i^{th }column vector using the i^{th }lowerorder modulation symbol in each of the N groups of lowerorder modulation symbols may be specifically understood as follows: An i^{th }lowerorder modulation symbol in the first group is used as the first element of the i^{th }column vector; an i^{th }lowerorder modulation symbol in the second group is used as the second element of the i^{th }column vector; and by analogy, an i^{th }lowerorder modulation symbol in an N^{th }group is used as an N^{th }element of the i^{th }column vector.
In addition, it is easy to learn that the matrix Q is a matrix of N rows and N columns.
To be specific, when a plurality of groups of lowerorder modulation symbols are combined into a plurality of groups of higherorder modulation symbols, the process may be specifically implemented through multiplication between matrices, so that implementation of a transmitter can be simplified.
With reference to the first possible implementation of the first aspect, in a second possible implementation of the first aspect, the determining N tobesent signals based on the N groups of higherorder modulation symbols includes: determining N first guard intervals; and inserting a t^{th }first guard interval in the N first guard intervals at a location following a t^{th }group of higherorder modulation symbols in the N groups of higherorder modulation symbols, to obtain a t^{th }tobesent signal, where t=1, 2, . . . , N.
Optionally, each first guard interval is formed by a 64bit Golay sequence.
With reference to the second possible implementation of the first aspect, in a third possible implementation of the first aspect, the determining N first guard intervals includes: determining N groups of first guard signals, where each of the N groups of first guard signals includes G first guard signals, and G is a positive integer greater than 1; and determining a sequence formed by a t^{th }group of first guard signals in the N groups of first guard signals as the t^{th }first guard interval in the N first guard intervals.
Optionally, a value of G is 64.
With reference to the second possible implementation of the first aspect, in a fourth possible implementation of the first aspect, the determining N first guard intervals includes: determining N groups of first guard signals, where each of the N groups of first guard signals includes G first guard signals, and G is a positive integer greater than 1; forming an r^{th }column vector using an r^{th }first guard signal in each of the N groups of first guard signals, where r=1, 2, . . . , G; and determining a product of the row vector of the s^{th }row in the matrix Q and the r^{th }column vector as an r^{th }first guard signal in an 5^{th }first guard interval in the N first guard intervals.
To be specific, the determined N groups of guard signals are combined to obtain N groups of combined guard signals, each group of combined guard signals forms a guard interval, and the guard interval formed by each group of combined guard signals is inserted at a location following a group of higherorder modulation symbols, to form a tobesent signal.
Alternatively, it may be understood as follows. The N groups of lowerorder modulation symbols and the determined guard signals are combined in a same manner, to respectively obtain the N groups of higherorder modulation symbols and combined guard signals, and the higherorder modulation symbols and guard intervals formed by the combined guard signals form tobesent signals. In this way, a receiver can perform discrete fourier transform (DFT) on received signals to obtain frequency domain signals; perform equalization processing on the frequency domain signals using a channel matrix, to obtain frequency domain higherorder modulation symbols and frequency domain combined guard signals; and perform inverse discrete Fourier transform (IDFT) on the frequency domain higherorder modulation symbols and the frequency domain combined guard signals, to obtain time domain higherorder modulation symbols and time domain combined guard signals. Therefore, signal combining can be implemented in frequency domain, and implementation of the receiver can be simplified.
With reference to the third or the fourth possible implementation of the first aspect, in a fifth possible implementation of the first aspect, the inserting a t^{th }first guard interval in the N first guard intervals at a location following a t^{th }group of higherorder modulation symbols in the N groups of higherorder modulation symbols, to obtain a t^{th }tobesent signal includes: performing phase shift on an i^{th }higherorder modulation symbol in the t^{th }group of higherorder modulation symbols in the N groups of higherorder modulation symbols, to obtain a t^{th }group of phaseshifted higherorder modulation symbols, where a phase shift factor of the phase shift is
performing phase shift on an n^{th }first guard signal in the t^{th }first guard interval in the N first guard intervals, to obtain a t^{th }phaseshifted first guard interval, where a phase shift factor of the phase shift is
and n=1, 2, . . . , G; and inserting the t^{th }phaseshifted first guard interval at a location following the t^{th }group of phaseshifted higherorder modulation symbols, to obtain the t^{th }tobesent signal.
Alternatively, it may be understood as follows. Each higherorder modulation symbol is multiplied by a phase shift factor
corresponding to the higherorder modulation symbol, to obtain a phaseshifted higherorder modulation symbol. Each first guard signal is multiplied by a phase shift factor
corresponding to the first guard signal, to obtain a phaseshifted first guard signal.
With reference to any one of the second to the fifth possible implementations of the first aspect, in a sixth possible implementation of the first aspect, the method further includes: determining N second guard intervals; and the inserting a t^{th }first guard interval in the N first guard intervals at a location following a t^{th }group of higherorder modulation symbols in the N groups of higherorder modulation symbols, to obtain a t^{th }tobesent signal includes: inserting a t^{th }second guard interval in the N second guard intervals at a location before the t^{th }group of higherorder modulation symbols in the N groups of higherorder modulation symbols, and inserting the t^{th }first guard interval at the location following the t^{th }group of higherorder modulation symbols, to obtain the t^{th }tobesent signal.
The second guard interval is inserted at a location before each group of higherorder modulation symbols, so that multipath interference can be further reduced.
With reference to any one of the third to the sixth possible implementations of the first aspect, in a seventh possible implementation of the first aspect, the N groups of first guard signals are the same.
It may be understood that, when the second guard interval is determined, N groups of second guard signals may be determined, where each of the N groups of second guard signals includes G second guard signals, and G is a positive integer greater than 1. A sequence formed by a t^{th }group of second guard signals in the N groups of second guard signals is determined as a t^{th }second guard interval in the N second guard intervals. Alternatively, when the second guard interval is determined, N groups of second guard signals may be determined, where each of the N groups of second guard signals includes G second guard signals, and G is a positive integer greater than 1. An r^{th }column vector is formed using an r^{th }second guard signal in each of the N groups of second guard signals. A product of the row vector of the s^{th }row in the matrix Q and the r^{th }column vector is determined as an r^{th }second guard signal in an s^{th }second guard interval in the N second guard intervals.
Optionally, the N groups of second guard signals are the same.
Optionally, the N groups of second guard signals are the same as the N groups of first guard signals.
With reference to any one of the first to the seventh possible implementations of the first aspect, in an eighth possible implementation of the first aspect, a value of N is 2, the lowerorder modulation symbol is a binary phase shift keying (BPSK) symbol, and the higherorder modulation symbol is a quadrature phase shift keying (QPSK) symbol.
With reference to the first aspect, in a ninth possible implementation of the first aspect, the matrix Q is one of the following matrices:
With reference to any one of the first to the seventh possible implementations of the first aspect, in a tenth possible implementation of the first aspect, a value of N is 2, the lowerorder modulation symbol is a QPSK symbol, and the higherorder modulation symbol is a 16 quadrature amplitude modulation (QAM) symbol.
With reference to the tenth possible implementation of the first aspect, in an eleventh possible implementation of the first aspect, the matrix Q is one of the following matrices:
With reference to any one of the first to the seventh possible implementations of the first aspect, in a twelfth possible implementation of the first aspect, a value of N is 2, the lowerorder modulation symbol is a QPSK symbol, and the higherorder modulation symbol is a 16 amplitude phase shift keying (APSK) symbol.
With reference to the twelfth possible implementation of the first aspect, in a thirteenth possible implementation of the first aspect, the matrix Q is one of the following matrices:
With reference to the twelfth possible implementation of the first aspect, in a fourteenth possible implementation of the first aspect, the matrix Q is one of the following matrices:
With reference to the thirteenth or the fourteenth possible implementation of the first aspect, in a fifteenth possible implementation of the first aspect, a value of is one of the following values: π/4, 3π/4, −π/4, and −3π/4.
With reference to any one of the first to the seventh possible implementations of the first aspect, in a sixteenth possible implementation of the first aspect, a value of N is 3, the lowerorder modulation symbol is a QPSK symbol, and the higherorder modulation symbol is a 64 quadrature amplitude modulation (QAM) symbol.
With reference to the sixteenth possible implementation of the first aspect, in a seventeenth possible implementation of the first aspect, the matrix Q is one of the following matrices:
With reference to any one of the first aspect, or the first to the seventeenth possible implementations of the first aspect, in an eighteenth possible implementation of the first aspect, a bandwidth of each of the N channels is 2.16 GHz.
Optionally, a value of N is 2, the lowerorder modulation symbol is a π/2 BPSK symbol, and the higherorder modulation symbol is a π/2 QPSK symbol; or a value of N is 2, the lowerorder modulation symbol is a π/2 QPSK symbol, and the higherorder modulation symbol is a π/2 16QAM symbol; or a value of N is 2, the lowerorder modulation symbol is a π/2 QPSK symbol, and the higherorder modulation symbol is a π/2 16APSK symbol.
Optionally, when the value of N is 2, the lowerorder modulation symbol is a π/2 BPSK symbol, and the higherorder modulation symbol is a π/2 QPSK symbol, the matrix Q is one of the matrices in the ninth possible implementation of the first aspect.
Optionally, when the value of N is 2, the lowerorder modulation symbol is a π/2 QPSK symbol, and the higherorder modulation symbol is a π/2 16QAM symbol, the matrix Q is one of the matrices the eleventh possible implementation of the first aspect.
Optionally, when the value of N is 2, the lowerorder modulation symbol is a π/2 QPSK symbol, and the higherorder modulation symbol is a π/2 16APSK symbol, the matrix Q is one of the matrices the thirteenth possible implementation of the first aspect, or the matrix Q is one of the matrices the fourteenth possible implementation of the first aspect.
In all the foregoing possible implementations, the sending a k^{th }tobesent signal in the N tobesent signals using a k^{th }channel in N channels includes: converting the N tobesent signals into N analog signals; determining, as a k^{th }radio frequency signal, a product of a k^{th }analog signal in the N analog signals and a carrier signal corresponding to the k^{th }channel in the N channels; and sending the k^{th }radio frequency signal using the k^{th }channel in the N channels.
The converting the N tobesent signals into N analog signals specifically includes: performing filtering processing on each tobesent signal, and then performing digitaltoanalog (D/A) conversion on the digital signals on which filtering processing is performed, to obtain analog signals.
Optionally, during actual sending, N radio frequency signals are superimposed to obtain a superimposed radio frequency signal, and the superimposed radio frequency signal is sent.
According to a second aspect, an apparatus is provided. The apparatus is configured to perform the method in any one of the first aspect or the possible implementations of the first aspect. Specifically, the apparatus includes a unit configured to perform the method in any one of the first aspect or the possible implementations of the first aspect.
According to a third aspect, an apparatus is provided. The apparatus includes a processor, a memory, and a transmitter. The processor, the memory, and the transmitter are connected to each other using a bus. The memory is configured to store an instruction. The processor is configured to invoke the instruction stored in the memory, to control the transmitter to send information, so as to enable the apparatus to perform the method in any one of the first aspect or the possible implementations of the first aspect.
According to a fourth aspect, a computer readable medium is provided. The computer readable medium is configured to store a computer program, where the computer program includes an instruction used to perform the method in any one of the first aspect or the possible implementations of the first aspect.
Technical solutions in embodiments of this application may be applied to various suitable communications systems, for example, a Long Term Evolution (LTE) system, an LTE frequency division duplex (FDD) system, an LTE time division duplex (TDD) system, and a future network such as a 5G network, a devicetodevice (D2D) system, and a machinetomachine (M2M) system.
In the embodiments of this application, user equipment (UE) may also be referred to as terminal equipment, a mobile station (MS), a mobile terminal, and the like. The user equipment may communicate with one or more core networks through a radio access network (RAN). For example, the user equipment may be a mobile phone (also referred to as a “cellular” phone), a computer with a mobile terminal, or the like. For example, the user equipment may be a portable, pocketsized, handheld, computer builtin, or invehicle mobile apparatus, a terminal device in a future 5G network, a terminal device in a future evolved public land mobile network (PLMN), or the like.
In the embodiments of this application, a base station may be an evolved NodeB (eNB or eNodeB) in a radio access network of the LTE system, or a base station in a radio access network of a future communications system. No limitation is imposed in this application.
It should be noted that, as shown in
It should be noted that, the application scenario shown in
Optionally, the communications system in which the base station and the user equipment in
In an example, the base station may further include a control part, configured to perform multiuser scheduling and resource allocation, pilot scheduling, user physical layer parameter configuration, and the like.
The UE may include an antenna, a duplexer, a TX, an RX (the TX and the RX may be collectively referred to as a transceiver (TRX)), and a baseband processing part. As shown in
In an example, the UE may further include a control part, configured to: request an uplink physical resource, calculate channel state information (CSI) corresponding to a downlink channel, determine whether a downlink data packet is successfully received, and the like.
To facilitate understanding of the embodiments of this application, a principle of combining a plurality of lowerorder modulation signals into higherorder modulation signals is first described herein. As shown in
The QPSK signal x may be considered as a combination of two BPSK signals s_{1 }and s_{2}, and values of s_{1 }and s_{2 }are {1, −1}. A specific combination manner is expressed as
where values of α and β are shown in Table 1:
Next, a principle of implementing channel aggregation is described. As shown in
S110. The transmit end device combines N groups of lowerorder modulation symbols into N groups of higherorder modulation symbols.
Specifically, an i^{th }higherorder modulation symbol in each group of higherorder modulation symbols is obtained by combining i^{th }lowerorder modulation symbols in all the N groups of lowerorder modulation symbols, each group of lowerorder modulation symbols includes M lowerorder modulation symbols, i=1, 2, . . . , M, N is a positive integer greater than 1, and M is a positive integer greater than 1.
S120. The transmit end device determines N tobesent signals based on the N groups of higherorder modulation symbols.
S130. The transmit end device sends the N tobesent signals using N channels.
Specifically, in S130, the transmit end device sends, to a receive end device, a k^{th }tobesent signal in the N tobesent signals using a k^{th }channel in the N channels, where k=1, 2, . . . , N.
The following uses an example in which a value of N is 2, to describe in detail the multichannelbased signal transmission method according to this embodiment of this application. In a process of describing this embodiment, a “modulation symbol” has a same meaning as a “modulation signal”. As shown in
When the lowerorder modulation signals are combined into higherorder modulation signals, a matrix Q is multiplied by a matrix including the lowerorder modulation signals s_{1}(n) and s_{2}(n), to obtain higherorder modulation signals x(n) and y(n). The matrix Q may be expressed as
Therefore, x(n)=α_{1}s_{1}(n)+β_{1}s_{2}(n) and y(n)=α_{2}s_{1}(n)+β_{2}s_{2}(n), where x(n) may be understood as a group of higherorder modulation signals, and y(n) may be understood as another group of higherorder modulation signals. Optionally, the transmit end device and the receive end device may agree on a specific form of the matrix Q in advance, or the transmit end device informs the receive end device of a specific form of the matrix Q through explicit indication.
A sequence that is formed by g_{1}(n) and is used as a guard interval (GI) is inserted at a location following a sequence formed by x(n), to form a first digital signal. Filtering processing and digitaltoanalog conversion processing are performed on the first digital signal, to obtain a first analog signal. The first analog signal is multiplied by a carrier signal e^{j2πf}^{c1}^{t }corresponding to a center frequency of the channel 1, to obtain a first radio frequency signal. A sequence that is formed by g_{2}(n) and is used as a guard interval (GI) is inserted at a location following a sequence formed by y(n), to form a second digital signal. Filtering processing and digitaltoanalog conversion processing are performed on the second digital signal, to obtain a second analog signal. The second analog signal is multiplied by a carrier signal e^{j2πf}^{c2}^{t }corresponding to a center frequency of the channel 2, to obtain a second radio frequency signal. Then, the first radio frequency signal is sent using the channel 1, and the second radio frequency signal is sent using the channel 2.
Optionally, in an example, when the first radio frequency signal and the second radio frequency signal are sent, superimposition processing may be performed on the first radio frequency signal and the second radio frequency signal, to obtain a tobesent radio frequency signal, and the tobesent radio frequency signal is sent.
Optionally, in another example, as shown in
Therefore,
Phase shift processing is also performed on corresponding guard signals, and a phase shift factor is
Therefore, the guard signals are respectively changed to
In an optional example, g_{1}(n)=g_{2}(n)=g(n), that is, when signal transmission is performed using the channel 1 and the channel 2, a same guard interval is inserted at locations following the higherorder modulation signals.
It may be understood that, when corresponding to different lowerorder modulation signals and different higherorder modulation signals, α_{1}, β_{1}, α_{2}, and β_{2 }have different values. Specifically, when the lowerorder modulation signal is a BPSK signal and the higherorder modulation signal is a QPSK signal, or when the lowerorder modulation signal is a π/2 BPSK signal and the higherorder modulation signal is a π/2 QPSK signal, the matrix Q may be specifically one of the following matrices:
When the lowerorder modulation signal is a QPSK signal and the higherorder modulation signal is a 16 quadrature amplitude modulation (QAM) signal, or when the lowerorder modulation signal is a π/2 QPSK signal and the higherorder modulation signal is a π/2 16QAM signal, the matrix Q may be specifically one of the following matrices:
When the lowerorder modulation signal is a QPSK signal and the higherorder modulation signal is a 16 amplitude phase shift keying (APSK) signal, or when the lowerorder modulation signal is a π/2 QPSK signal and the higherorder modulation signal is a π/2 16APSK signal, the matrix Q may be one of the following matrices:
When the lowerorder modulation signal is a QPSK signal and the higherorder modulation signal is a 16APSK signal, or when the lowerorder modulation signal is a π/2 QPSK signal and the higherorder modulation signal is a π/2 16APSK signal, the matrix Q may be one of the following matrices:
In the foregoing embodiment, optionally, a value of θ is one of the following values: π/4, 3π/4, −π/4, and −3π/4.
Correspondingly, after receiving the radio frequency signals sent by the transmit end device, the receive end device performs discrete Fourier transform (DFT) on the higherorder modulation signals and the GI parts following the higherorder modulation signals, to obtain formula (1):
where r_{f1}(n) and r_{f2}(n) respectively represent frequency domain signals received by the receive end device on a subcarrier n on the channel 1 and the channel 2, h_{f1}(n) and h_{f2}(n) respectively represent corresponding frequency domain signal responses on the subcarrier n on the channel 1 and the channel 2, x_{f}(n) and y_{f}(n) are respectively frequency domain signals on the subcarrier n that correspond to {tilde over (x)}(n) and {tilde over (y)}(n), g_{f1}(n) and g_{f2}(n) are respectively frequency domain signals on the subcarrier n that correspond to {tilde over (g)}_{1}(n) and {tilde over (g)}_{2}(n), {tilde over (x)}(n), {tilde over (y)}(n), {tilde over (g)}_{1}(n), and {tilde over (g)}_{2}(n) are respectively represented by formulas (2) to (5), and n in formulas (2) to (5) represents a subcarrier sequence number:
where g_{f1}(n) and g_{f2}(n) are respectively frequency domain signals on the subcarrier n that correspond to {tilde over (g)}_{1}(n) and {tilde over (g)}_{2}(n):
Formula (6) may be obtained by performing channel equalization on formula (1):
Inverse discrete Fourier transform (IDFT) is performed on a result of formula (6), to obtain {circumflex over (x)}(n), ŷ(n), _{1}(n), and _{2}(n). Signal combining is performed on {circumflex over (x)}(n) and ŷ(n), to obtain s_{1}(n) and s_{2}(n). For details, refer to formula (7):
In this embodiment of this application, optionally, the guard signals g_{1}(n) and g_{2}(n) are combined into guard signals _{1}(n) and _{2}(n). A specific implementation is similar to the foregoing description, that is, the matrix Q is multiplied by the guard signals g_{1}(n) and g_{2}(n). For details, refer to formula (8):
Correspondingly, when sending signals, the transmit end device inserts, at a location following a sequence formed by x(n), a sequence that is formed by _{1}(n) and is used as a GI, to form a first digital signal; performs filtering processing and digitaltoanalog conversion processing on the first digital signal, to obtain a first analog signal; and multiplies the first analog signal by a carrier signal e^{j2πf}^{c1}^{t }corresponding to a center frequency of the channel 1, to obtain a first radio frequency signal. The transmit end device inserts, at a location following a sequence formed by y(n), a sequence that is formed by _{2}(n) and is used as a GI, to form a second digital signal; performs filtering processing and digitaltoanalog conversion processing on the second digital signal, to obtain a second analog signal; and multiplies the second analog signal by a carrier signal e^{j2πf}^{c2}^{t }corresponding to a center frequency of the channel 2, to obtain a second radio frequency signal. The transmit end device sends the first radio frequency signal using the channel 1, and sends the second radio frequency signal using the channel 2.
Further, after receiving the radio frequency signals sent by the transmit end device, the receive end device performs DFT on the higherorder modulation signals and the GI parts following the higherorder modulation signals, to obtain formula (9):
Formula (w) may be obtained by performing channel equalization on formula (9):
Using H_{f}(n) in frequency domain may calculate s_{f1}(n), s_{f2}(n), g_{f1}(n), and g_{f2}(n) together, where s_{f1}(n) and s_{f2}(n) are respectively frequency domain signals corresponding to {tilde over (s)}_{f1}(n) and {tilde over (s)}_{f2}(n), g_{f1}(n) and g_{f2}(n) are respectively frequency domain signals corresponding to _{1}(n), and _{2}(n), {tilde over (s)}_{1}(n), {tilde over (s)}_{2}(n), _{1}(n), and _{2}(n) are respectively represented by formulas (11) to (14):
IDFT is performed on the frequency domain signals {circumflex over (r)}_{f1}(n) and {circumflex over (r)}_{f2}(n) obtained through equalization, to obtain {tilde over (s)}_{1}(n), {tilde over (s)}_{2 }(n), _{1}(n), and _{2}(n). The first M signals of each of {tilde over (s)}_{1}(n) and {tilde over (s)}_{2}(n) are taken, to obtain s_{1}(n) and s_{2}(n).
Optionally, in the foregoing optional embodiments, a guard interval formed by a guard sequence is inserted at the location before each of the sequence formed by x(n) and the sequence formed by y(n). Further, the guard sequences may be combined using the method in the foregoing embodiment, to obtain combined guard sequences, and each group of combined guard sequences forms a guard interval. Further, the guard intervals inserted at the locations before the sequence formed by x(n) and the sequence formed by y(n) are the same. Therefore, multipath interference in a signal transmission process can be reduced.
In this embodiment of this application, optionally, when the value of N is 3, the lowerorder modulation signal is a QPSK signal, and the higherorder modulation signal is a 64QAM signal, the matrix Q may be one of the following matrices:
In this embodiment of this application, optionally, as shown in
G(n)=[g_{1}, g_{2}, . . . g_{G−1}, g_{G}], E(n)=[e_{1}, e_{2}, . . . e_{E−1}, e_{E}], G*(−n)=[g*_{G}, g*_{G−1}, . . . , g_{1}], and E*(−n)=[e*_{E}, e*_{E−1}, . . . e*_{2}, e*_{1}].
A signal x(n) sent by the transmit end device on the channel 1 is formed using the following sequences: G(n) s(n) and E(n). Further, as shown in
Correspondingly, after receiving the signals sent using the channel 1 and the channel 2, the receive end device performs DFT on the received signal x(n) on the channel 1 and the received signal y(n) on the channel 2, to obtain frequency domain signals that are shown in formula (15):
where r_{f1}(n) and r_{f2}(n) respectively represent frequency domain signals received by the receive end device on a subcarrier n on the channel 1 and the channel 2, h_{f1}(n) and h_{f2}(n) respectively represent corresponding frequency domain signal responses on the subcarrier n on the channel 1 and the channel 2, x_{f}(n) and y_{f}(n) are respectively frequency domain signals on the subcarrier n that are corresponding to x(n) and y(n), n is a subcarrier sequence number, and n=0, 1, . . . , (G+E+M−1).
Then, the receive end device performs maximum ratio combining on the received signals r_{f1}(n) and r_{f2}(n), to obtain x_{f}(n), and transforms x_{f}(n) to a time domain to obtain s(n), g(n), and e(n).
In this embodiment of this application, optionally, as shown in
G_{1}(n)=[g_{1}, g_{2}, . . . g_{G−1}, g_{G}], G_{2}(n)=[e_{1}, e_{2}, . . . e_{E}], G_{3}(n)=[e*_{E}, e*_{E−1}, . . . e*_{2}, e*_{1}], and G_{4}(n)=[g*_{G}, g*_{G−1}, . . . , g*_{1}].
A signal x(n) sent by the transmit end device on the channel 1 is formed using the following sequences: G_{1}(n), s(n), and G_{2}(n). Further, as shown in
Correspondingly, after receiving the signals sent using the channel 1 and the channel 2, the receive end device performs DFT on the received signal x(n) on the channel 1 and the received signal y(n) on the channel 2, to obtain frequency domain signals that are shown in formula (16):
where r_{f1}(n) and r_{f2}(n) respectively represent frequency domain signals received by the receive end device on a subcarrier n on the channel 1 and the channel 2, h_{f1}(n) and h_{f2}(n) respectively represent corresponding frequency domain signal responses on the subcarrier n on the channel 1 and the channel 2, x_{f}(n) and y_{f}(n) are respectively frequency domain signals on the subcarrier n that correspond to x(n) and y(n), n is a subcarrier sequence number, and n=0, 1, . . . , (G+E+M−1).
Then, the receive end device performs maximum ratio combining on the received signals r_{f1}(n) and r_{f2}(n), to obtain x_{f}(n), and transforms x_{f}(n) to a time domain to obtain s(n), g(n).
With reference to
Therefore, according to the multichannelbased signal transmission apparatus in this embodiment of this application, a plurality of groups of lowerorder modulation symbols are combined into a plurality of groups of higherorder modulation symbols, a plurality of tobesent signals are generated based on the plurality of groups of higherorder modulation symbols, and the plurality of tobesent signals are sent using a plurality of channels. In this way, one lowerorder modulation symbol can be transmitted on a plurality of channels, signal diversity transmission is implemented, and signal transmission reliability is improved.
In this embodiment of this application, optionally, when combining the N groups of lowerorder modulation symbols into the N groups of higherorder modulation symbols, the processing unit 11 is specifically configured to: form an i^{th }column vector using the i^{th }lowerorder modulation symbol in each of the N groups of lowerorder modulation symbols; and determine a product of a row vector of an s^{th }row in a matrix Q and the i^{th }column vector as an i^{th }higherorder modulation symbol in an s^{th }group of higherorder modulation symbols in the N groups of higherorder modulation symbols, where s=1, 2, . . . , N.
In this embodiment of this application, optionally, when determining the N tobesent signals based on the N groups of higherorder modulation symbols, the processing unit 11 is specifically configured to: determine N first guard intervals; and insert a t^{th }first guard interval in the N first guard intervals at a location following a t^{th }group of higherorder modulation symbols in the N groups of higherorder modulation symbols, to obtain a t^{th }tobesent signal, where t=1, 2, . . . , N.
In this embodiment of this application, optionally, when determining the N first guard intervals, the processing unit 11 is specifically configured to: determine N groups of first guard signals, where each of the N groups of first guard signals includes G first guard signals, and G is a positive integer greater than 1; and determine a sequence formed by a t^{th }group of first guard signals in the N groups of first guard signals as the t^{th }first guard interval in the N first guard intervals.
In this embodiment of this application, optionally, when determining the N first guard intervals, the processing unit 11 is specifically configured to: determine N groups of first guard signals, where each of the N groups of first guard signals includes G first guard signals, and G is a positive integer greater than 1; form an r^{th }column vector using an r^{th }first guard signal in each of the N groups of first guard signals, where r=1, 2, . . . , G; and determine a product of the row vector of the s^{th }row in the matrix Q and the r^{th }column vector as an r^{th }first guard signal in an s^{th }first guard interval in the N first guard intervals.
In this embodiment of this application, optionally, when inserting the t^{th }first guard interval in the N first guard intervals at the location following the t^{th }group of higherorder modulation symbols in the N groups of higherorder modulation symbols, to obtain the t^{th }tobesent signal, the processing unit 11 is specifically configured to: perform phase shift on an i^{th }higherorder modulation symbol in the t^{th }group of higherorder modulation symbols in the N groups of higherorder modulation symbols, to obtain a t^{th }group of phaseshifted higherorder modulation symbols, where a phase shift factor of the phase shift is
perform phase shift on an n^{th }first guard signal in the t^{th }first guard interval in the N first guard intervals, to obtain a t^{th }phaseshifted first guard interval, where a phase shift factor of the phase shift is
and n=1, 2, . . . , G; and insert the t^{th }phaseshifted first guard interval at a location following the t^{th }group of phaseshifted higherorder modulation symbols, to obtain the t^{th }tobesent signal.
In this embodiment of this application, optionally, the processing unit 11 is further configured to determine N second guard intervals.
When inserting the t^{th }first guard interval in the N first guard intervals at the location following the t^{th }group of higherorder modulation symbols in the N groups of higherorder modulation symbols, to obtain the t^{th }tobesent signal, the processing unit 11 is specifically configured to: insert a t^{th }second guard interval in the N second guard intervals at a location before the t^{th }group of higherorder modulation symbols in the N groups of higherorder modulation symbols, and insert the t^{th }first guard interval at the location following the t^{th }group of higherorder modulation symbols, to obtain the t^{th }tobesent signal.
In this embodiment of this application, optionally, the N groups of first guard signals are the same.
In this embodiment of this application, optionally, a value of N is 2, the lowerorder modulation symbol is a binary phase shift keying (BPSK) symbol, and the higherorder modulation symbol is a quadrature phase shift keying (QPSK) symbol.
In this embodiment of this application, optionally, the matrix Q is one of the following matrices:
In this embodiment of this application, optionally, a value of N is 2, the lowerorder modulation symbol is a QPSK symbol, and the higherorder modulation symbol is a 16 quadrature amplitude modulation QAM symbol.
In this embodiment of this application, optionally, the matrix Q is one of the following matrices:
In this embodiment of this application, optionally, a value of N is 2, the lowerorder modulation symbol is a QPSK symbol, and the higherorder modulation symbol is a 16 amplitude phase shift keying APSK symbol.
In this embodiment of this application, optionally, the matrix Q is one of the following matrices:
In this embodiment of this application, optionally, the matrix Q is one of the following matrices:
In this embodiment of this application, optionally, a value of is one of the following values: π/4, 3π/4, −π/4, and −3π/4.
In this embodiment of this application, optionally, a value of N is 3, the lowerorder modulation symbol is a QPSK symbol, and the higherorder modulation symbol is a 64 quadrature amplitude modulation QAM symbol.
In this embodiment of this application, optionally, the matrix Q is one of the following matrices:
In this embodiment of this application, optionally, a bandwidth of each of the N channels is 2.16 GHz.
For the multichannelbased signal transmission apparatus according to this embodiment of this application, refer to the procedure of the corresponding multichannelbased signal transmission method in the embodiments of this application. In addition, the units/modules in the apparatus and the foregoing other operations and/or functions are respectively intended to implement a corresponding procedure in the method. For brevity, details are not described herein again.
The method disclosed in the embodiments of this application may be applied to the processor 120, or may be implemented by the processor 120. In an implementation process, steps of the method may be implemented using an integrated logical circuit of hardware in the processor 120 or using an instruction in a form of software. The processor 120 may be a general purpose processor, a digital signal processor, an applicationspecific integrated circuit, a field programmable gate array or another programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or perform the methods, steps, and logical block diagrams disclosed in the embodiments of this application. The general purpose processor may be a microprocessor, or any conventional processor or the like. The steps of the method disclosed with reference to the embodiments of this application may be directly performed using a hardware processor, or may be performed using a combination of hardware in the processor and a software module. The software module may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a readonly memory, a programmable readonly memory, an electrically erasable programmable memory, or a register. The storage medium is located in the memory 130. The processor 120 reads information in the memory 130, and completes the steps of the foregoing method in combination with hardware of the processor.
Specifically, the processor 120 is configured to: combine N groups of lowerorder modulation symbols into N groups of higherorder modulation symbols, where an i^{th }higherorder modulation symbol in each group of higherorder modulation symbols is obtained by combining i^{th }lowerorder modulation symbols in all the N groups of lowerorder modulation symbols, each group of lowerorder modulation symbols includes M lowerorder modulation symbols, i=1, 2, . . . , M, N is a positive integer greater than 1, and M is a positive integer greater than 1; and determine N tobesent signals based on the N groups of higherorder modulation symbols.
The transmitter no is configured to send a k^{th }tobesent signal in the N tobesent signals using a k^{th }channel in N channels, where k=1, 2, . . . , N.
Therefore, according to the multichannelbased signal transmission apparatus in this embodiment of this application, a plurality of groups of lowerorder modulation symbols are combined into a plurality of groups of higherorder modulation symbols, a plurality of tobesent signals are generated based on the plurality of groups of higherorder modulation symbols, and the plurality of tobesent signals are sent using a plurality of channels. In this way, one lowerorder modulation symbol is transmitted on different channels, signal diversity transmission is implemented, and signal transmission reliability is improved.
For the multichannelbased signal transmission apparatus according to this embodiment of this application, refer to the procedure of the multichannelbased signal transmission method in the embodiments of this application. In addition, the units/modules in the apparatus and the foregoing other operations and/or functions are respectively intended to implement a corresponding procedure in the method. For brevity, details are not described herein again.
It should be understood that, “one embodiment” or “an embodiment” mentioned in the whole specification means that particular features, structures, or characteristics related to this embodiment are included in at least one embodiment of this application. Therefore, “in one embodiment” or “in an embodiment” appearing throughout the specification does not necessarily indicate a same embodiment. In addition, these particular features, structures, or characteristics may be combined in one or more embodiments using any appropriate manner.
It should be understood that, the term “and/or” in this specification describes only an association relationship for describing associated objects and represents that three relationships may exist. For example, A and/or B may represent the following three cases: Only A exists, both A and B exist, and only B exists. In addition, the character “/” in this specification generally indicates an “or” relationship between the associated objects.
It should be understood that, sequence numbers of the foregoing processes do not mean execution sequences in various embodiments of this application. The execution sequences of the processes should be determined based on functions and internal logic of the processes, and should not be construed as any limitation on the implementation processes of the embodiments of this application.
A person of ordinary skill in the art may be aware that, in combination with the embodiments disclosed in this specification, method steps and units may be implemented by electronic hardware, computer software, or a combination thereof. To clearly describe interchangeability between the hardware and the software, steps and compositions of each embodiment have been generally described in the foregoing description based on functions. Whether the functions are performed by hardware or software depends on particular applications and design constraint conditions of the technical solutions. A person of ordinary skill in the art may use different methods to implement the described functions for each particular application, but it should not be considered that the implementation goes beyond the scope of this application.
In combination with the embodiments disclosed in this specification, methods or steps may be implemented by hardware, a software program executed by a processor, or a combination thereof. The software program may reside in a random access memory (RAM), a memory, a readonly memory (ROM), an electrically programmable readonly memory (EPROM), an electrically erasable programmable readonly memory (EEPROM), a register, a hard disk, a removable magnetic disk, a compact disc readonly memory (CDROM), or any other form of storage medium known in the art.
In the several embodiments provided in this application, it should be understood that the disclosed system, apparatus, and method may be implemented in other manners. For example, the described apparatus embodiment is only an example. For example, the unit division is only logical function division and may be other division in actual implementation. For example, a plurality of units or components may be combined or integrated into another system, or some features may be ignored or not performed.
The units described as separate parts may or may not be physically separate, and parts displayed as units may or may not be physical units, may be located in one position, or may be distributed on a plurality of network units. Some or all of the units may be selected based on actual requirements to achieve the objectives of the solutions of the embodiments.
In addition, function units in the embodiments of this application may be integrated into one processing unit, or each of the units may exist alone physically, or two or more units are integrated into one unit.
This application is described in detail with reference to the accompanying drawings and in combination with the embodiments, but this application is not limited thereto. Various equivalent modifications or replacements can be made to the embodiments of this application by a person of ordinary skill in the art without departing from the essence of this application, and these modifications or replacements shall fall within the scope of this application.