×

Genetically engineered Candida utilis capable of degrading and utilizing kitchen waste and construction method therefor

  • US 10,577,615 B2
  • Filed: 06/24/2019
  • Issued: 03/03/2020
  • Est. Priority Date: 12/19/2016
  • Status: Active Grant
First Claim
Patent Images

1. A method for constructing a genetically engineered Candida utilis capable of degrading and utilizing kitchen waste, wherein the genetically engineered Candida utilis expresses a Candida utilis multigene co-expression vector that has an alpha-amylase comprising SEQ ID NO:

  • 1, a glucoamylase gene comprising SEQ ID NO;

    2, and an acid protease gene comprising SEQ ID NO;

    3 and has been integrated into the Candida utilis genome, the method comprising steps of;

    (1) obtaining the Candida utilis multigene co-expression vector by (a) providing a Saccharomyces cerevisiae multigene co-expression vector comprising an rDNA sequence, a phosphoglycerate kinase promoter of Saccharomyces cerevisiae, and a terminator, (b) removing the rDNA sequence from the Saccharomyces cerevisiae multigene co-expression vector, and (c) replacing the phosphoglycerate kinase promoter in the Saccharomyces cerevisiae multigene co-expression vector with a glyceraldehyde-3-phosphate dehydrogenase promoter of Candida utilis, thereby obtaining the Candida utilis multigene co-expression vector;

    (2) performing double digestions on the Candida utilis multigene co-expression vector, the Saccharomyces cerevisiae multigene co-expression vector, the alpha-amylase gene, the glucoamylase gene, and the acid protease gene by using restriction endonucleases to obtain a fragment of DNA comprising the Candida utilis multigene co-expression vector, a fragment of DNA comprising the Saccharomyces cerevisiae multigene co-expression vector, a fragment of DNA comprising the alpha-amylase gene, a fragment of DNA comprising the glucoamylase gene, and a fragment of DNA comprising the acid protease gene;

    (3) purifying and recovering the fragments of DNA comprising the Candida utilis multigene co-expression vector, the Saccharomyces cerevisiae multigene co-expression vector, the alpha-amylase gene, the glucoamylase gene, and the acid protease gene, respectively;

    (4) ligating the fragment of DNA comprising the alpha-amylase gene into the Saccharomyces cerevisiae multigene co-expression vector, ligating the fragment of DNA comprising the glucoamylase gene into the fragment of DNA comprising the Saccharomyces cerevisiae multigene co-expression vector, and ligating the fragment of DNA comprising the acid protease gene into the fragment of DNA comprising the Candida utilis multigene co-expression vector, by using a DNA ligase, to form (i) an alpha-amylase gene expression cassette comprising the phosphoglycerate kinase promoter, the alpha-amylase gene, and the terminator, (ii) a glucoamylase gene expression cassette comprising the phosphoglycerate kinase promoter, the glucoamylase gene, and the terminator, and (iii) an acid protease gene expression cassette comprising the glyceraldehyde-3-phosphate dehydrogenase promoter, the acid protease gene, and the terminator, respectively;

    (5) cleaving the alpha-amylase gene expression cassette, the glucoamylase gene expression cassette, and the acid protease gene expression cassette by using one or more restriction endonucleases to form a fragment of DNA comprising the alpha-amylase gene expression cassette, a fragment of DNA comprising the glucoamylase gene expression cassette, and a fragment of DNA comprising the acid protease gene expression cassette, respectively, then ligating the fragment of DNA comprising the alpha-amylase gene expression cassette and the fragment of DNA comprising the glucoamylase gene expression cassette, sequentially into the the fragment of DNA comprising the acid protease gene expression cassette, thus constructing a three-gene co-expression vector of alpha-amylase, glucoamylase, and acid protease;

    (6) performing a single digestion on the three-gene co-expression vector by using a restriction endonuclease, and(7) transforming the product into Candida utilis thereby integrating the product into the genome, thus obtaining the genetically engineered Candida utilis capable of degrading and utilizing kitchen waste.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×