×

ANTI-REFLECTION HIGH CONDUCTIVITY MULTI-LAYER COATING FOR FLAT CRT PRODUCTS

  • US 20020141064A1
  • Filed: 01/10/2001
  • Published: 10/03/2002
  • Est. Priority Date: 01/10/2001
  • Status: Active Grant
First Claim
Patent Images

1. An anti-reflection high conductivity multi-layer coating for Flat CRT products comprising six layers designated as a first, a second, a third, a fourth, a fifth, and a sixth layer in a consecutive numerical order beginning with a layer nearest from a substrate;

  • said first layer being arranged under the second layer and comprising a good adhesion with glass substrate oxide material having a refractive index within 1.45 to 1.55 at a wavelength of 520 nm, the layer having a physical thickness of 10-30 mn, and the layer being produced by vacuum sputtering process, said second layer being arranged on the first layer and comprising a metal having a refractive index within the approximating range of 1.5 to 4.0 at a wavelength of 520 nm, the layer having a physical thickness of 1-5 nm, and the layer being produced by vacuum sputtering process;

    said third layer being arranged on the second layer and comprising an conductive oxide material having a refractive index between 1.85 to 2.1 at a wavelength of 520 nm, the layer having a physical thickness of 20-60 nm, and the layer being produced by vacuum sputtering process;

    said fourth layer being arranged on the third layer and comprising a high chemical resistance oxide material having a refractive index within 2.0 to 2.5 at a wavelength of 520 nm, the layer having a physical thickness of 10-40 nm, and the layer being produced by vacuum sputtering process, said fifth layer being arranged on the fourth layer and comprising a good adhesion and high chemical resistance oxide material having a refractive index within 1.45 to 1.55 at a wavelength of 520 nm, the layer having a physical thickness of 10-30 nm, and the layer is produced by vacuum sputtering process, and said the sixth layer being arranged on the fifth layer and comprising an oxide material having a refractive index within 1.45 to 1.55 at a wavelength of 520 nm, the layer having a physical thickness of 60-120 nm, and the layer is produced by wet process.

View all claims
  • 0 Assignments
Timeline View
Assignment View
    ×
    ×