×

Balanced five cycle engine with shortened axial extent

  • US 20030150410A1
  • Filed: 02/14/2002
  • Published: 08/14/2003
  • Est. Priority Date: 02/14/2002
  • Status: Active Grant
First Claim
Patent Images

1. A five cycle internal combustion engine comprising:

  • a housing assembly having a longitudinal axis, a plurality of first cylinders in said housing assembly having parallel axes disposed in annularly spaced relation about said longitudinal axis, a plurality of second cylinders in said housing assembly having parallel axes disposed in annularly spaced relation about said longitudinal axis and in annularly spaced relation with respect to the axes of said first cylinders, each of said plurality of first and second cylinders including an inlet end portion having an inlet port therein, a central working portion and an outlet end portion having an outlet port therein, the inlet end portion and the outlet end portion of said plurality of first cylinders being arranged in axially opposite relation with respect to the inlet end portion, and the outlet end portion of said plurality of second cylinders respectively, a first inlet piston mounted in each first cylinder constructed and arranged to be moved in sealing relation to the associated first cylinder from an inlet end position wherein the inlet port thereof communicates with the working portion thereof in an axial direction away from said inlet end position into an inlet port cut-off position wherein said inlet piston cuts off communication of the inlet port thereof with the working portion thereof and beyond into the working portion thereof, a second inlet piston mounted in each second cylinder constructed and arranged to be moved in sealing relation to the associated second cylinder from an inlet end position wherein the inlet port thereof communicates with the working portion thereof in an axial direction away from said inlet end position into an inlet port cut-off position wherein said inlet piston cuts off communication of the inlet port thereof with the working portion thereof and beyond into the working portion thereof, a first outlet piston mounted in each first cylinder constructed and arranged to be moved in sealing relation to the associated cylinder from an outlet end position wherein the outlet port thereof is communicated with the working portion thereof in an axial direction away from said outlet end position into an outlet port cut-off position wherein said outlet piston cuts off the communication of the outlet port thereof with the working portion thereof and beyond into the working portion thereof, a second outlet piston mounted in each second cylinder constructed and arranged to be moved in sealing relation to the associated second cylinder from an outlet end position wherein the outlet port thereof is communicated with the working portion thereof in an axial direction away from said outlet end position into an outlet port cut-off position wherein said outlet piston cuts off the communication of the outlet port thereof with the working portion thereof and beyond into the working portion thereof, rotor structure within said housing assembly constructed and arranged to move with a rotational movement about said longitudinal axis, a first annular inlet cam disposed annularly about said longitudinal axis axially outwardly of the inlet end portions of said first cylinders, a first inlet cam follower operatively connected between said first annular inlet cam and each of said first inlet pistons so as to effect axial movements thereof in opposite directions during the rotation of the rotor structure about said longitudinal axis, a second annular inlet cam disposed annularly about said longitudinal axis axially outwardly of the inlet end portions of said second axis cylinders, a second inlet cam follower operatively connected between said second annular inlet cam and each of said second inlet pistons so as to effect axial movements thereof in opposite directions during the rotation of the rotor structure about said longitudinal axis, a first annular outlet cam disposed annularly about said longitudinal axis axially outwardly of the outlet end portions of said first cylinders, a first outlet cam follower operatively connected between said first annular outlet cam and each of said first outlet pistons so as to effect axial movements thereof in opposite directions during the rotation of the rotor structure about said longitudinal axis, a second annular outlet cam disposed annularly about said longitudinally axis axially outwardly of the outlet end portions of said second cylinders, a second outlet cam follower operatively connected between said first annular outlet cam and each of said first outlet pistons so as to effect axial movements thereof in opposite directions during the rotation of the rotor structure about said longitudinal axis, said first and second inlet and outlet annular cams being configured to move the first and second inlet and outlet pistons respectively within each cylinder through a successive five cycle repeating movement which includes (1) a power cycle wherein said first and second inlet and outlet pistons are moved axially outwardly from combustion positions disposed in closely spaced relation within the working portion of the associated cylinders defining a minimum volume condition into a respective cut-off positions thereof defining a maximum volume condition, (2) an exhaust cycle wherein said first and second outlet pistons are moved from the outlet cut-off positions thereof into the outlet end positions thereof and said first and second inlet pistons are moved through the working portions thereof into close proximity to said first and second outlet pistons respectively, (3) a transfer cycle wherein said first and second inlet and outlet pistons are moved together in close proximity to each other through the working portion thereof, (4) an intake cycle wherein said first and second outlet pistons are initially moved through the working portions of the associated cylinders while the first and second inlet pistons respectively are in positions allowing communication of the first and second inlet ports respectively with the associated working portions with the final movement of said intake cycle resulting in said first and second inlet and outlet pistons being in compression positions spaced from the respective end positions thereof so that the communication of the respective ports are cut off from the working portion of the associated cylinder, and (5) a compression cycle wherein said first and second inlet and outlet pistons are moved from said compression positions thereof toward each other respectively into said combustion positions, the first inlet and outlet annular cams being interrelated to the second inlet and outlet annular cams such that the transfer cycle movement of each first inlet and outlet piston and an associated first inlet and outlet cam follower is accompanied by a generally equal and axially opposite transfer cycle movement of a second inlet and outlet piston and an associated second inlet and outlet cam follower so that all transfer movements of said first and second inlet and outlet pistons and the associated first and second inlet and outlet cam followers thereof are substantially axially dynamically balanced.

View all claims
  • 0 Assignments
Timeline View
Assignment View
    ×
    ×