Pulse oximetry data capture system
-
0Associated
Cases -
0Associated
Defendants -
0Accused
Products -
8Forward
Citations -
0
Petitions -
4
Assignments
First Claim
1. . A data capture system comprising:
- a sensor having emitters adapted to transmit light of at least first and second wavelengths into a fleshy medium and a detector adapted to generate at least first and second intensity signals in response to receiving light after absorption by constituents of pulsatile blood flowing within the fleshy medium;
a monitor configured to input said intensity signals, generate digitized signals from said intensity signals at a sampling rate and compute at least one physiological parameter responsive to magnitudes of said digitized signals; and
a data storage device integrated with said monitor, said data storage device being adapted to record data derived from said digitized signals on a removable storage media at said sampling rate.
4 Assignments
0 Petitions

Accused Products

Abstract
A data capture system utilizes a sensor with emitters adapted to transmit light into a fleshy medium and a detector adapted to generate intensity signals in response to receiving light after absorption by the fleshy medium. A monitor is configured to input the intensity signals, generate digitized signals from the intensity signals at a sampling rate and compute at least one physiological parameter responsive to magnitudes of the digitized signals. A data storage device is integrated with the monitor and is adapted to record data derived from the digitized signals on a removable storage media at the sampling rate.
105 Citations
View as Search Results
Waveform Observing Apparatus and System Thereof | ||
Patent #
US 20090313289A1
Filed 06/04/2009
|
Current Assignee
Keyence Corporation
|
Sponsoring Entity
Keyence Corporation
|
Waveform observing apparatus and system thereof | ||
Patent #
US 8,675,005 B2
Filed 06/04/2009
|
Current Assignee
Keyence Corporation
|
Sponsoring Entity
Keyence Corporation
|
MODULAR PATIENT MONITOR | ||
Patent #
US 20140357966A1
Filed 08/20/2014
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Medical monitoring hub | ||
Patent #
US 9,993,207 B2
Filed 07/19/2016
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Wireless patient monitoring device | ||
Patent #
US 10,188,296 B2
Filed 08/24/2015
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Arm mountable portable patient monitor | ||
Patent #
US 10,213,108 B2
Filed 03/03/2017
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Physiological measurement device | ||
Patent #
US 10,219,706 B2
Filed 10/11/2018
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Physiological measurement device | ||
Patent #
US 10,335,033 B2
Filed 11/21/2018
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Variable mode averager | ||
Patent #
US 6,430,525 B1
Filed 06/05/2000
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Non-protruding optoelectronic lens | ||
Patent #
US 6,525,386 B1
Filed 03/10/1998
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Optical probe and positioning wrap | ||
Patent #
US 6,678,543 B2
Filed 11/08/2001
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
Pulse oximetry data confidence indicator | ||
Patent #
US 6,684,090 B2
Filed 05/15/2001
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Pulse oximetry sensor compatible with multiple pulse oximetry systems | ||
Patent #
US 6,697,656 B1
Filed 06/27/2000
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Low power pulse oximeter | ||
Patent #
US 6,697,658 B2
Filed 06/26/2002
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Stereo pulse oximeter | ||
Patent #
US 6,714,804 B2
Filed 12/21/2001
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
Signal processing apparatus and method | ||
Patent #
US 6,699,194 B1
Filed 04/11/2000
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
Resposable pulse oximetry sensor | ||
Patent #
US 6,725,075 B2
Filed 04/23/2002
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
Signal processing apparatus | ||
Patent #
US 6,745,060 B2
Filed 12/03/2001
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
Ribbon cable substrate pulse oximetry sensor | ||
Patent #
US 6,760,607 B2
Filed 12/20/2001
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Dual-mode pulse oximeter | ||
Patent #
US 6,770,028 B1
Filed 08/18/2000
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Pulse oximeter probe-off detection system | ||
Patent #
US 6,771,994 B2
Filed 02/24/2003
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Low-noise optical probes for reducing light piping | ||
Patent #
US 6,792,300 B1
Filed 07/03/2001
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Low-noise optical probes for reducing ambient noise | ||
Patent #
US 6,813,511 B2
Filed 09/27/2002
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
System for indicating the expiration of the useful operating life of a pulse oximetry sensor | ||
Patent #
US 6,515,273 B2
Filed 02/10/2000
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Pulse oximeter probe-off detection system | ||
Patent #
US 6,526,300 B1
Filed 06/16/2000
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Shielded optical probe having an electrical connector | ||
Patent #
US 6,541,756 B2
Filed 01/25/2001
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Pulse oximeter monitor for expressing the urgency of the patient's condition | ||
Patent #
US 6,542,764 B1
Filed 12/01/2000
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Shielded optical probe and method | ||
Patent #
US 6,580,086 B1
Filed 10/19/1999
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Universal/upgrading pulse oximeter | ||
Patent #
US 6,584,336 B1
Filed 03/01/2000
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Pulse oximetry sensor adapter | ||
Patent #
US 6,597,933 B2
Filed 10/17/2001
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
Pulse oximetry pulse indicator | ||
Patent #
US 6,606,511 B1
Filed 01/06/2000
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Optical spectroscopy pathlength measurement system | ||
Patent #
US 6,640,116 B2
Filed 08/09/2001
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Rapid non-invasive blood pressure measuring device | ||
Patent #
US 6,632,181 B2
Filed 10/05/1999
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
Signal processing apparatus | ||
Patent #
US 6,650,917 B2
Filed 12/04/2001
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
Method and apparatus for demodulating signals in a pulse oximetry system | ||
Patent #
US 6,643,530 B2
Filed 12/13/2000
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
Pulse oximeter probe-off detector | ||
Patent #
US 6,654,624 B2
Filed 12/19/2001
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
Pulse oximetry sensor adapter | ||
Patent #
US 6,349,228 B1
Filed 09/23/1999
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
Pulse oximeter probe-off detector | ||
Patent #
US 6,360,114 B1
Filed 03/21/2000
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
System and method of determining whether to recalibrate a blood pressure monitor | ||
Patent #
US 6,371,921 B1
Filed 11/01/1999
|
Current Assignee
VITAL INSITE INCORPORATED
|
Sponsoring Entity
VITAL INSITE INCORPORATED
|
Resposable pulse oximetry sensor | ||
Patent #
US 6,377,829 B1
Filed 12/09/1999
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Manual and automatic probe calibration | ||
Patent #
US 6,397,091 B2
Filed 11/30/1999
|
Current Assignee
The United States of America As Represented By The Secretary of Agriculture
|
Sponsoring Entity
The United States of America As Represented By The Secretary of Agriculture
|
Shielded optical probe and method having a longevity indication | ||
Patent #
US 6,388,240 B2
Filed 03/02/2001
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
Oversampling pulse oximeter | ||
Patent #
US 6,397,092 B1
Filed 12/17/1999
|
Current Assignee
Datex-Ohmeda Incorporated
|
Sponsoring Entity
Datex-Ohmeda Incorporated
|
Elastic sock for positioning an optical probe | ||
Patent #
US 6,470,199 B1
Filed 06/21/2000
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Plethysmograph pulse recognition processor | ||
Patent #
US 6,463,311 B1
Filed 12/23/1999
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Pulse oximeter user interface | ||
Patent #
US 20020161291A1
Filed 02/12/2002
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
JP Morgan Chase Bank N.A.
|
Photodiode detector with integrated noise shielding | ||
Patent #
US 6,184,521 B1
Filed 01/06/1998
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Signal processing apparatus and method | ||
Patent #
US 6,206,830 B1
Filed 11/17/1999
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
Method and apparatus for demodulating signals in a pulse oximetry system | ||
Patent #
US 6,229,856 B1
Filed 04/10/1998
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Signal processing apparatus | ||
Patent #
US 6,236,872 B1
Filed 11/25/1998
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Signal processing apparatus | ||
Patent #
US 6,263,222 B1
Filed 10/06/1997
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Low-noise optical probes | ||
Patent #
US 6,256,523 B1
Filed 06/09/1998
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Patient cable connector | ||
Patent #
US 6,280,213 B1
Filed 11/07/2000
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
Optical filter for spectroscopic measurement and method of producing the optical filter | ||
Patent #
US 6,278,522 B1
Filed 05/26/1999
|
Current Assignee
Cercacor Laboratories
|
Sponsoring Entity
Masimo Laboratories Inc.
|
Fetal pulse oximetry sensor | ||
Patent #
US 6,285,896 B1
Filed 07/07/1999
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Stereo pulse oximeter | ||
Patent #
US 6,334,065 B1
Filed 05/27/1999
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Manual and automatic probe calibration | ||
Patent #
US 6,011,986 A
Filed 02/02/1998
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Rapid non-invasive blood pressure measuring device | ||
Patent #
US 6,027,452 A
Filed 06/26/1996
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
VITA INSITE INC.
|
Signal processing apparatus and method | ||
Patent #
US 6,036,642 A
Filed 06/22/1998
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Apparatus and method for measuring an induced perturbation to determine a physiological parameter | ||
Patent #
US 6,045,509 A
Filed 02/19/1998
|
Current Assignee
VITAL INSITE INC.
|
Sponsoring Entity
VITAL INSITE INC.
|
Signal processing apparatus and method | ||
Patent #
US 6,067,462 A
Filed 05/19/1998
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
Signal processing apparatus | ||
Patent #
US 6,081,735 A
Filed 07/03/1997
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Low noise optical probe | ||
Patent #
US 6,088,607 A
Filed 01/28/1997
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Blood glucose monitoring system | ||
Patent #
US 6,110,522 A
Filed 04/16/1998
|
Current Assignee
Cercacor Laboratories
|
Sponsoring Entity
Masimo Laboratories Inc.
|
Ambulatory recorder having enhanced sampling technique | ||
Patent #
US 6,115,622 A
Filed 08/06/1998
|
Current Assignee
Medtronic Incorporated
|
Sponsoring Entity
Medtronic Incorporated
|
Active pulse blood constituent monitoring | ||
Patent #
US 6,151,516 A
Filed 11/12/1998
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Laboratories Inc.
|
Circuit board based cable connector | ||
Patent #
US 6,152,754 A
Filed 12/21/1999
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Signal processing apparatus | ||
Patent #
US 6,157,850 A
Filed 05/16/1997
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Patient cable sensor switch | ||
Patent #
US 6,165,005 A
Filed 12/07/1999
|
Current Assignee
JP Morgan Chase Bank N.A.
|
Sponsoring Entity
Masimo Corporation
|
Active pulse blood constituent monitoring method | ||
Patent #
US 5,860,919 A
Filed 04/17/1997
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Shielded medical connector | ||
Patent #
US 5,890,929 A
Filed 06/03/1997
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
-
|
Exciter-detector unit for measuring physiological parameters | ||
Patent #
US 5,904,654 A
Filed 02/26/1996
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
-
|
Method and apparatus for demodulating signals in a pulse oximetry system | ||
Patent #
US 5,919,134 A
Filed 01/12/1998
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
-
|
Patient cable connector | ||
Patent #
US 5,934,925 A
Filed 04/09/1997
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Optical filter for spectroscopic measurement and method of producing the optical filter | ||
Patent #
US 5,940,182 A
Filed 06/01/1998
|
Current Assignee
Cercacor Laboratories
|
Sponsoring Entity
-
|
Pulse oximetry sensor adapter | ||
Patent #
US 5,995,855 A
Filed 02/11/1998
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Signal processing apparatus and method | ||
Patent #
US 6,002,952 A
Filed 04/14/1997
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Patient cable sensor switch | ||
Patent #
US 5,997,343 A
Filed 03/19/1998
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Patient cable connector | ||
Patent #
D393830S
Filed 10/16/1995
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Signal processing apparatus and method | ||
Patent #
US 5,769,785 A
Filed 06/07/1995
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Manual and automatic probe calibration | ||
Patent #
US 5,758,644 A
Filed 06/07/1995
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Optical filter for spectroscopic measurement and method of producing the optical filter | ||
Patent #
US 5,760,910 A
Filed 06/07/1995
|
Current Assignee
Cercacor Laboratories
|
Sponsoring Entity
Masimo Corporation
|
Low-noise optical probes | ||
Patent #
US 5,782,757 A
Filed 10/16/1995
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Automatically activated blood pressure measurement device | ||
Patent #
US 5,785,659 A
Filed 05/17/1996
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Vital Insite Inc.
|
Motion insensitive pulse detector | ||
Patent #
US 5,791,347 A
Filed 08/14/1996
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
VITAL INSITE INC.
|
Apparatus and method for measuring an induced perturbation to determine a physiological parameter | ||
Patent #
US 5,810,734 A
Filed 11/22/1995
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
VITAL INSITE INC.
|
Manual and automatic probe calibration | ||
Patent #
US 5,823,950 A
Filed 11/12/1996
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Apparatus and method for measuring an induced perturbation to determine a physiological parameter | ||
Patent #
US 5,833,618 A
Filed 11/22/1995
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
VITAL INSITE INC.
|
Apparatus and method for measuring an induced perturbation to determine a physical condition of the human arterial system | ||
Patent #
US 5,830,131 A
Filed 11/22/1995
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
VITAL INSITE INC.
|
Apparatus and method for measuring an induced perturbation to determine blood pressure | ||
Patent #
US 5,590,649 A
Filed 04/15/1994
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
VITAL INSITE INC.
|
Signal processing apparatus | ||
Patent #
US 5,632,272 A
Filed 10/07/1994
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Low noise optical probe | ||
Patent #
US 5,638,818 A
Filed 11/01/1994
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Active pulse blood constituent monitoring | ||
Patent #
US 5,638,816 A
Filed 06/07/1995
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Patient cable connector | ||
Patent #
US 5,645,440 A
Filed 10/16/1995
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Signal processing apparatus | ||
Patent #
US 5,685,299 A
Filed 12/14/1995
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Modular physiological computer-recorder | ||
Patent #
US 5,701,894 A
Filed 11/09/1995
|
Current Assignee
Spacelabs Healthcare Incorporated
|
Sponsoring Entity
DEL MAR AVIONICS
|
Signal processing apparatus and method | ||
Patent #
US 5,482,036 A
Filed 05/26/1994
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Signal processing apparatus | ||
Patent #
US 5,490,505 A
Filed 10/06/1993
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Arterial sensor | ||
Patent #
US 5,494,043 A
Filed 05/04/1993
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
VITAL INSITE INC.
|
Apparatus and method for noninvasive blood pressure measurement | ||
Patent #
US 5,533,511 A
Filed 01/05/1994
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
VITAL INSITE INCORPORATED
|
Pulse responsive device | ||
Patent #
US 5,431,170 A
Filed 11/25/1992
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Mathews Geoffrey R.
|
Finger-cot probe | ||
Patent #
US 5,452,717 A
Filed 06/02/1994
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Low noise finger cot probe | ||
Patent #
US 5,337,744 A
Filed 07/14/1993
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Masimo Corporation
|
Method and apparatus for continuously and noninvasively measuring the blood pressure of a patient | ||
Patent #
US 5,163,438 A
Filed 09/24/1990
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
Paramed Technology Incorporated
|
Method and apparatus for continuously and non-invasively measuring the blood pressure of a patient | ||
Patent #
US 4,960,128 A
Filed 11/14/1988
|
Current Assignee
Masimo Corporation
|
Sponsoring Entity
PARAMED TECHNOLOGY INCORPORATED A CORP. OF CA
|
14 Claims
- 1. . A data capture system comprising:
a sensor having emitters adapted to transmit light of at least first and second wavelengths into a fleshy medium and a detector adapted to generate at least first and second intensity signals in response to receiving light after absorption by constituents of pulsatile blood flowing within the fleshy medium;
a monitor configured to input said intensity signals, generate digitized signals from said intensity signals at a sampling rate and compute at least one physiological parameter responsive to magnitudes of said digitized signals; and
a data storage device integrated with said monitor, said data storage device being adapted to record data derived from said digitized signals on a removable storage media at said sampling rate. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8)
- 9. . A data capture method comprising the steps of:
emitting light of at least first and second wavelengths;
detecting said light after absorption by a fleshy medium site so as to generate a corresponding sensor signal;
digitizing at a sampling rate;
demodulating said sensor signal so as to generate a plethysmograph;
calculating at least oxygen saturation and pulse rate from said plethysmograph; and
writing data to a removable storage media, said data comprising said plethysmograph at said sampling frequency along with said oxygen saturation and said pulse rate at a sub-sampling frequency. - View Dependent Claims (10, 11)
- 12. . A data capture system comprising:
a sensor adapted to generate an intensity signal responsive to light absorption by constituents of pulsatile blood flowing within a fleshy medium;
a digitizer inputting said intensity signal and generating a digital plethysmograph signal at a sampling rate;
a signal processor inputting said plethysmograph and calculating an oxygen saturation and pulse rate;
a data storage device inputting said plethysmograph, oxygen saturation and pulse rate;
a storage media configured to removably load into said data storage device, said data storage device writing said plethymograph to said storage media at said sampling rate, along with said oxygen saturation and said pulse rate at a sub-sampling rate. - View Dependent Claims (13, 14)
1 Specification
This application relates to and claims the benefit of prior U.S. Provisional Patent Application No. 60/518,051 entitled Pulse Oximetry Trend Data Storage System, filed Nov. 7, 2003 and incorporated by reference herein.
Pulse oximeters have gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care units, general wards and home care by providing early detection of decreases in the arterial oxygen supply, reducing the risk of accidental death and injury.
The monitor 120, which may be a standalone device or may be incorporated as a module or built-in portion of a multiparameter patient monitoring system, computes at least one physiological parameter responsive to magnitudes of the intensity signals. A monitor 120 typically provides a numerical readout of the patient'"'"'s oxygen saturation 122, a numerical readout of pulse rate 124, and a display of the patient'"'"'s plethysmograph 126, which provides a visual display of the patient'"'"'s pulse contour and pulse rate.
In one embodiment, the pulse oximetry system 100 has a portable instrument 210 and a docking station 220, such as described in U.S. Pat. No. 6,584,336 entitled Universal/Upgrading Pulse Oximeter, assigned to Masimo Corporation, Irvine, Calif. and incorporated by reference herein. The portable 210 is a battery operated, fully functional, stand-alone pulse oximeter monitor, as described above, which can be installed into the docking station 220 to expand its functionality.
A conventional pulse oximeter may store trend data that consists of, for example, oxygen saturation and pulse rate. This data is recorded at a low rate, such as 1 Hz. Although the resolution afforded by a low data rate is fine for many patient diagnostic purposes, it is desirable to store the plethysmograph waveform, other pulse oximeter parameters and various internal data at a high rate, such as the sensor signal sampling rate. The resulting high resolution data advantageously assists and/or improves patient condition evaluation, pulse oximetry exception diagnosis and algorithm development. Further, pulse oximetry data is conventionally stored using an external computer or a laptop, which may not always be available or is otherwise cumbersome.
A pulse oximetry data capture system advantageously replaces an external computer with a small data storage device that utilizes removable storage media to hold many hours of high resolution data. In one embodiment, the data storage device is integrated into a docking station for a portable instrument. The removable storage media, having been written with data, can be easily shipped off-site from where the data is collected for later analysis.
One aspect of a pulse oximetry data capture system is a sensor having emitters adapted to transmit light of at least first and second wavelengths into a fleshy medium. A detector is adapted to generate at least first and second intensity signals in response to receiving light after absorption by constituents of pulsatile blood flowing within the fleshy medium. A monitor is configured to input the intensity signals, generate digitized signals from the intensity signals at a sampling rate and compute at least one physiological parameter responsive to magnitudes of the digitized signals. A data storage device is integrated with the monitor and is adapted to record data derived from the digitized signals on a removable storage media at the sampling rate.
Another aspect of a pulse oximetry data capture system is a method having the steps of emitting light of at least first and second wavelengths and detecting the light after absorption by a fleshy tissue site so as to generate a corresponding sensor signal. Additional steps are digitizing at a sampling rate, demodulating the sensor signal so as to generate a plethysmograph, and calculating at least oxygen saturation and pulse rate from the plethysmograph. A further step is writing data to the removable media. The data comprises the plethysmograph at the sampling frequency along with the oxygen saturation and the pulse rate at a sub-sampling frequency.
A further aspect of a data capture system has a sensor adapted to generate an intensity signal responsive to light absorption by constituents of pulsatile blood flowing within a fleshy medium. A digitizer inputs the intensity signal and generates a digital plethysmograph signal at a sampling rate. A signal processor inputs the plethysmograph and calculates an oxygen saturation and pulse rate. A storage media is configured to removably load into a data storage device. The data storage device inputs the plethysmograph, oxygen saturation and pulse rate and writes the plethymograph to the storage media at the sampling rate, along with the oxygen saturation and the pulse rate at a sub-sampling rate.
FIGS. 5A-E are front, front perspective, back, side and internal top views, respectively, of a pulse oximetry docking station incorporating a data capture system;
In one embodiment, the data stream 322 comprises raw, filtered and/or scaled plethysmograph waveform data; computed output data such as oxygen saturation, pulse rate, signal strength and signal quality; and other system data such as sensor status, monitor status, monitor settings, alarms, and internal algorithm parameters and variables. Pulse oximetry signal strength and signal quality or confidence data are described in U.S. Pat. No. 6,463,311 entitled Plethysmograph Pulse Recognition Processor and U.S. Pat. No. 6,684,090 entitled Pulse Oximetry Data Confidence Indicator, both assigned to Masimo Corporation, Irvine, Calif. and both incorporated by reference herein. Sensor status, monitor status and settings and alarms are described in U.S. Pat. No. 6,658,276 entitled Pulse Oximeter User Interface, also assigned to Masimo Corporation and incorporated by reference herein.
FIGS. 5A-E illustrate a particular docking station embodiment 500 of a pulse oximetry data capture system 400 (
In one embodiment, 32-bit IR waveform data can be stored in w0-w3 750, 32-bit RD waveform data can be stored in w4-w7 750, and various 16-bit output data, such as oxygen saturation and pulse rate can be stored in d1-d2 740 as identified by the sequence byte 730. In a particular embodiment, the sampling rate is 62.5 Hz, and 62 messages packets are stored in a specific sequence per second. The sequence byte (seq) 730 increments from 1 to 62 with each successive message packet 700 and then resets to 1, repeating so as to identify the specific data in, say, d1-d2 740. For example, plethysmograph waveform data is stored in w0-w7 750 at a 62 Hz rate and oxygen saturation, corresponding to seq=1 and pulse rate, corresponding to seq=2, are stored in d1-d2 740 at a sub-sampling rate of 1 Hz.
A pulse oximetry data capture system has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in the art will appreciate many variations and modifications.