Positioning apparatus and method of a mobile terminal using a positioning server independently constructed on a network
-
0Associated
Cases -
0Associated
Defendants -
0Accused
Products -
72Forward
Citations -
0
Petitions -
1
Assignment
First Claim
1. . A positioning apparatus of a mobile terminal, comprising:
- a positioning server, independently constructed on a network, for collecting, storing, and managing assistant data that includes orbit information and correction information of a satellite, and for providing one of the assistant data and position information using the assistant data in response to an external request;
wherein the positioning server provides the position information of the terminal subject to positioning in response to the request for the position information of the terminal subject to positioning created from at least one network among a plurality of networks that share the positioning server.
1 Assignment
0 Petitions

Accused Products

Abstract
A positioning apparatus and method of a mobile terminal using a positioning server independently constructed on a network. The positioning apparatus includes a positioning server, independently constructed on a network, for collecting and storing/managing assistant data that includes orbit information and correction information of a satellite, and providing the assistant data or position information using the assistant data in response to an external request. The positioning server provides the position information of the terminal subject to positioning in response to the request for the position information of the terminal subject to positioning created from at least one network among a plurality of networks that share the positioning server. Accordingly, an accurate positioning result can be obtained with a cost for implementation of the positioning system reduced.
142 Citations
View as Search Results
Location information system and method for performing notification based upon location | ||
Patent #
US 7,873,370 B2
Filed 11/30/2006
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
Location information system and method for performing notification based upon location | ||
Patent #
US 7,966,022 B2
Filed 07/06/2009
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
Method of area-based positioning using OMA sercure user plane location in mobile communications system | ||
Patent #
US 7,925,276 B2
Filed 03/09/2010
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
Method of area-based positioning using OMA secure user plane location in mobile communications system | ||
Patent #
US 7,925,275 B2
Filed 03/09/2010
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
Method for providing a location information service in mobile communications system | ||
Patent #
US 7,937,092 B2
Filed 03/16/2006
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
Method and apparatus for performing position determination with a short circuit call flow | ||
Patent #
US 7,974,639 B2
Filed 03/15/2006
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Secure location session manager | ||
Patent #
US 20110258328A1
Filed 06/20/2011
|
Current Assignee
TeleCommunication Systems Inc
|
Sponsoring Entity
TeleCommunication Systems Inc
|
Location information system and method for performing notification based upon location | ||
Patent #
US 8,060,116 B2
Filed 07/06/2009
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
Location reporting with secure user plane location (SUPL) | ||
Patent #
US 8,068,056 B2
Filed 08/24/2006
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Location information system and method for performing notification based upon location | ||
Patent #
US 8,045,999 B2
Filed 07/06/2009
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
Location information system and method for performing notification based upon location | ||
Patent #
US 8,036,681 B2
Filed 07/06/2009
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
Location information system and method for performing notification based upon location | ||
Patent #
US 8,036,680 B2
Filed 07/06/2009
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
AREA-BASED POSITIONING METHOD IN MOBILE COMMUNICATIONS SYSTEM | ||
Patent #
US 20100167757A1
Filed 03/09/2010
|
Current Assignee
Dong-Hee Shim
|
Sponsoring Entity
Dong-Hee Shim
|
Method and apparatus for providing a global secure user plane location (SUPL) service | ||
Patent #
US 7,714,779 B2
Filed 10/28/2005
|
Current Assignee
Avago Technologies International Sales Pte Limited
|
Sponsoring Entity
Global Locate Incorporated
|
METHOD AND APPARATUS FOR PROVIDING A GLOBAL SECURE USER PLANE LOCATION (SUPL) SERVICE | ||
Patent #
US 20100182196A1
Filed 03/30/2010
|
Current Assignee
Avago Technologies International Sales Pte Limited
|
Sponsoring Entity
Avago Technologies International Sales Pte Limited
|
AREA-BASED POSITIONING METHOD IN MOBILE COMMUNICATIONS SYSTEM | ||
Patent #
US 20100062752A1
Filed 08/10/2006
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
Area-based positioning method in mobile communications system | ||
Patent #
US 7,706,813 B2
Filed 08/10/2006
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
AREA-BASED POSITIONING METHOD IN MOBILE COMMUNICATIONS SYSTEM | ||
Patent #
US 20100167759A1
Filed 03/09/2010
|
Current Assignee
Dong-Hee Shim
|
Sponsoring Entity
Dong-Hee Shim
|
SYSTEM AND METHOD FOR SUPL ROAMING IN WIMAX NETWORKS | ||
Patent #
US 20100234022A1
Filed 03/16/2009
|
Current Assignee
Andrew LLC
|
Sponsoring Entity
Andrew LLC
|
METHOD AND APPARATUS FOR SELECTING A REAL TIME LOCATION SERVICE PROVIDER | ||
Patent #
US 20090005062A1
Filed 06/27/2007
|
Current Assignee
Google Technology Holdings LLC
|
Sponsoring Entity
Google Technology Holdings LLC
|
LOCATION INFORMATION SYSTEM AND METHOD FOR PERFORMING NOTIFICATION BASED UPON LOCATION | ||
Patent #
US 20090286536A1
Filed 07/06/2009
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
LOCATION INFORMATION SYSTEM AND METHOD FOR PERFORMING NOTIFICATION BASED UPON LOCATION | ||
Patent #
US 20090279484A1
Filed 07/06/2009
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
LOCATION INFORMATION SYSTEM AND METHOD FOR PERFORMING NOTIFICATION BASED UPON LOCATION | ||
Patent #
US 20090280804A1
Filed 07/06/2009
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
LOCATION INFORMATION SYSTEM AND METHOD FOR PERFORMING NOTIFICATION BASED UPON LOCATION | ||
Patent #
US 20090280831A1
Filed 07/06/2009
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
LOCATION INFORMATION SYSTEM AND METHOD FOR PERFORMING NOTIFICATION BASED UPON LOCATION | ||
Patent #
US 20090280830A1
Filed 07/06/2009
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
Terminal, system and method for providing location information service by interworking between WLAN and mobile communication network | ||
Patent #
US 7,613,155 B2
Filed 04/26/2006
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
Location information system and method for performing notification based upon location | ||
Patent #
US 20080014962A1
Filed 11/30/2006
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
Method And Apparatus For Parallel Registration And Call Establishment | ||
Patent #
US 20080008157A1
Filed 07/05/2007
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Method and apparatus for providing location services with short-circuited message flows | ||
Patent #
US 20070004429A1
Filed 06/19/2006
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
VOIP emergency call support | ||
Patent #
US 20070060097A1
Filed 08/01/2006
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Method and apparatus for providing a global secure user plane location (SUPL) service | ||
Patent #
US 20070096981A1
Filed 10/28/2005
|
Current Assignee
Avago Technologies International Sales Pte Limited
|
Sponsoring Entity
Avago Technologies International Sales Pte Limited
|
EMERGENCY CIRCUIT-MODE CALL SUPPORT | ||
Patent #
US 20070135089A1
Filed 09/14/2006
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Method for requesting triggered location service between terminals in location information system | ||
Patent #
US 20070185985A1
Filed 01/25/2007
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
LOCATION SERVICE PROVIDING SYSTEM AND METHOD FOR PROVIDING TRIGGERED LOCATION REQUEST SERVICE | ||
Patent #
US 20070281662A1
Filed 06/04/2007
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Sponsoring Entity
Samsung Electronics Co. Ltd.
|
Method for transmitting location information | ||
Patent #
US 20060246919A1
Filed 04/28/2006
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
Method for providing a location information service in mobile communications system | ||
Patent #
US 20060246920A1
Filed 03/16/2006
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
Terminal, system and method for providing location information service by interworking between WLAN and mobile communication network | ||
Patent #
US 20060245406A1
Filed 04/26/2006
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
Method and apparatus for performing position determination with a short circuit call flow | ||
Patent #
US 20060258369A1
Filed 03/15/2006
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
METHOD AND APPARATUS FOR SUPPORTING LOCATION SERVICES VIA A GENERIC LOCATION SESSION | ||
Patent #
US 20120046014A1
Filed 08/18/2011
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
METHOD FOR POSITIONING TARGET TERMINAL WHILE PROTECTING PRIVACY OF USER THEREOF | ||
Patent #
US 20070286212A1
Filed 06/05/2007
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Sponsoring Entity
Samsung Electronics Co. Ltd.
|
Method for transmitting location information | ||
Patent #
US 8,081,986 B2
Filed 04/28/2006
|
Current Assignee
LG Electronics Inc.
|
Sponsoring Entity
LG Electronics Inc.
|
Method and apparatus for providing a global secure user plane location (SUPL) service | ||
Patent #
US 8,085,195 B2
Filed 03/30/2010
|
Current Assignee
Avago Technologies International Sales Pte Limited
|
Sponsoring Entity
Global Locate Incorporated
|
Timing-Based Positioning Accuracy | ||
Patent #
US 20130162470A1
Filed 01/03/2012
|
Current Assignee
Avago Technologies International Sales Pte Limited
|
Sponsoring Entity
Avago Technologies International Sales Pte Limited
|
Method for positioning target terminal while protecting privacy of user thereof | ||
Patent #
US 8,478,287 B2
Filed 06/05/2007
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Sponsoring Entity
Samsung Electronics Co. Ltd.
|
Location reporting with secure user plane location (SUPL) | ||
Patent #
US 20130210451A1
Filed 11/09/2012
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Secure location session manager | ||
Patent #
US 8,687,511 B2
Filed 06/20/2011
|
Current Assignee
TeleCommunication Systems Inc
|
Sponsoring Entity
TeleCommunication Systems Inc
|
SECURE LOCATION IDENTIFICATION SERVICE | ||
Patent #
US 20140129628A1
Filed 11/07/2012
|
Current Assignee
Verizon Patent and Licensing Incorporated
|
Sponsoring Entity
Verizon Patent and Licensing Incorporated
|
Prepaid short messaging | ||
Patent #
US 8,738,496 B2
Filed 05/07/2012
|
Current Assignee
TeleCommunication Systems Inc
|
Sponsoring Entity
TeleCommunication Systems Inc
|
Wireless network tour guide | ||
Patent #
US 8,744,491 B2
Filed 10/28/2010
|
Current Assignee
TeleCommunication Systems Inc
|
Sponsoring Entity
TeleCommunication Systems Inc
|
Location reporting with secure user plane location (SUPL) | ||
Patent #
US 8,755,818 B2
Filed 10/07/2011
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Method and apparatus for providing location services with short-circuited message flows | ||
Patent #
US 8,792,902 B2
Filed 06/19/2006
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Location reporting with secure user plane location (SUPL) | ||
Patent #
US 8,874,134 B2
Filed 11/09/2012
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Method and apparatus for performing position determination with a short circuit call flow | ||
Patent #
US 8,929,919 B2
Filed 07/01/2011
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Method for positioning target terminal while protecting privacy of user thereof | ||
Patent #
US 8,971,918 B2
Filed 11/29/2012
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Sponsoring Entity
Samsung Electronics Co. Ltd.
|
Secure location identification service | ||
Patent #
US 8,972,605 B2
Filed 11/07/2012
|
Current Assignee
Verizon Patent and Licensing Incorporated
|
Sponsoring Entity
Verizon Patent and Licensing Incorporated
|
Location service providing system and method for providing triggered location request service | ||
Patent #
US 8,989,777 B2
Filed 06/04/2007
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Sponsoring Entity
Samsung Electronics Co. Ltd.
|
Method for positioning target terminal while protecting privacy of user thereof | ||
Patent #
US 9,131,463 B2
Filed 12/18/2014
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Sponsoring Entity
Samsung Electronics Co. Ltd.
|
Emergency circuit-mode call support | ||
Patent #
US 9,137,770 B2
Filed 09/14/2006
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Efficient periodic location reporting in a radio access network | ||
Patent #
US 9,154,907 B2
Filed 06/19/2006
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Emergency text messaging | ||
Patent #
US 9,204,277 B2
Filed 12/10/2014
|
Current Assignee
TeleCommunication Systems Inc
|
Sponsoring Entity
TeleCommunication Systems Inc
|
Method and apparatus for selecting a real time location service provider | ||
Patent #
US 9,210,680 B2
Filed 06/27/2007
|
Current Assignee
Google Technology Holdings LLC
|
Sponsoring Entity
Google Technology Holdings LLC
|
Location Services Agent | ||
Patent #
US 20160006881A1
Filed 09/14/2015
|
Current Assignee
TeleCommunication Systems Inc
|
Sponsoring Entity
TeleCommunication Systems Inc
|
Mobile activity status tracker | ||
Patent #
US 9,241,040 B2
Filed 02/11/2011
|
Current Assignee
TeleCommunication Systems Inc
|
Sponsoring Entity
TeleCommunication Systems Inc
|
RLP router | ||
Patent #
US 9,313,645 B2
Filed 06/20/2013
|
Current Assignee
TeleCommunication Systems Inc
|
Sponsoring Entity
TeleCommunication Systems Inc
|
Secure location session manager | ||
Patent #
US 9,398,449 B2
Filed 10/31/2013
|
Current Assignee
TeleCommunication Systems Inc
|
Sponsoring Entity
TeleCommunication Systems Inc
|
Read acknowledgement interoperability for text messaging and IP messaging | ||
Patent #
US 9,408,047 B2
Filed 10/08/2014
|
Current Assignee
TeleCommunication Systems Inc
|
Sponsoring Entity
TeleCommunication Systems Inc
|
Efficient periodic location reporting in a radio access network | ||
Patent #
US 9,549,289 B2
Filed 10/05/2015
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Authentication in secure user plane location (SUPL) systems | ||
Patent #
US 9,706,408 B2
Filed 07/22/2016
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
VOIP emergency call support | ||
Patent #
US 9,788,181 B2
Filed 09/10/2014
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Location reporting with secure user plane location (SUPL) | ||
Patent #
US 9,860,695 B2
Filed 09/10/2014
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Method and apparatus for supporting location services via a generic location session | ||
Patent #
US 10,063,642 B2
Filed 08/18/2011
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
VoIP emergency call support | ||
Patent #
US 10,178,522 B2
Filed 08/01/2006
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Electronic real estate bartering system | ||
Patent #
US 7,158,956 B1
Filed 09/20/2000
|
Current Assignee
Richard B. Himmelstein
|
Sponsoring Entity
Richard B. Himmelstein
|
Automated trading system in an electronic trading exchange | ||
Patent #
US 7,177,833 B1
Filed 07/18/2000
|
Current Assignee
DCFB LLC
|
Sponsoring Entity
Edge Capture LLC
|
Providing location information in a visited network | ||
Patent #
US 7,218,940 B2
Filed 02/27/2004
|
Current Assignee
Nokia Technologies Oy
|
Sponsoring Entity
Nokia Corporation
|
Method in positioning, a system, and an electronic device | ||
Patent #
US 7,246,010 B2
Filed 10/08/2003
|
Current Assignee
Nokia Technologies Oy
|
Sponsoring Entity
Nokia Corporation
|
Method and system for providing location dependent information | ||
Patent #
US 7,245,910 B2
Filed 05/22/2001
|
Current Assignee
Nokia Technologies Oy
|
Sponsoring Entity
Nokia Corporation
|
Location system and method for client terminals which provide location-based service to mobile terminals | ||
Patent #
US 7,277,711 B2
Filed 12/29/2003
|
Current Assignee
NEC Corporation
|
Sponsoring Entity
NEC Corporation
|
System for pricing financial instruments | ||
Patent #
US 7,305,362 B2
Filed 04/16/2002
|
Current Assignee
NYSE AMERICAN LLC
|
Sponsoring Entity
American Stock Exchange LLC
|
Methods and apparatus for transferring position data between terminals in wireless communications systems | ||
Patent #
US 6,466,788 B1
Filed 12/21/1998
|
Current Assignee
Telefonaktiebolaget LM Ericsson
|
Sponsoring Entity
Telefonaktiebolaget LM Ericsson
|
Electronic bartering system | ||
Patent #
US 6,993,511 B2
Filed 08/03/2001
|
Current Assignee
BARTER SECURITIES
|
Sponsoring Entity
BARTER SECURITIES
|
Private information supplying system for mobile stations, method for displaying private information and method for roughly positioning users | ||
Patent #
US 7,039,427 B2
Filed 05/28/2002
|
Current Assignee
Apple Inc.
|
Sponsoring Entity
NEC Corporation
|
Implied market trading system | ||
Patent #
US 7,039,610 B2
Filed 10/04/2001
|
Current Assignee
ICE FUTURES EUROPE
|
Sponsoring Entity
ICE FUTURES
|
Electronic bartering system | ||
Patent #
US 7,080,050 B1
Filed 12/03/1999
|
Current Assignee
BARTER SECURITIES
|
Sponsoring Entity
BARTER SECURITIES
|
Method for providing location-based services in a wireless network, such as varying levels of services | ||
Patent #
US 7,116,985 B2
Filed 12/20/2002
|
Current Assignee
ATT Mobility II LLC
|
Sponsoring Entity
Cingular Wireless II LLC
|
Electronic bartering system | ||
Patent #
US 7,133,847 B2
Filed 08/03/2001
|
Current Assignee
BARTER SECURITIES
|
Sponsoring Entity
BARTER SECURITIES
|
Roaming agreement application and database for carrying out roaming between private and public wireless networks | ||
Patent #
US 7,133,670 B1
Filed 12/29/2003
|
Current Assignee
Sprint Spectrum LP
|
Sponsoring Entity
Sprint Spectrum LP
|
Method of exchanging goods over the internet | ||
Patent #
US 6,847,938 B1
Filed 09/20/1999
|
Current Assignee
LIVEUNIVERSE INC.
|
Sponsoring Entity
Moore Donna R.
|
Systems and methods for physical location self-awareness in network connected devices | ||
Patent #
US 20050010663A1
Filed 07/11/2003
|
Current Assignee
Agilent Technologies Incorporated
|
Sponsoring Entity
Agilent Technologies Incorporated
|
Mobile station and its program | ||
Patent #
US 6,937,867 B2
Filed 08/21/2002
|
Current Assignee
Beijing Xiaomi Mobile Software Co. Ltd.
|
Sponsoring Entity
DENSO Corporation
|
Mobile communications terminal with position determination | ||
Patent #
US 6,975,871 B2
Filed 07/30/2002
|
Current Assignee
Beijing Xiaomi Mobile Software Co. Ltd.
|
Sponsoring Entity
DENSO Corporation
|
Beginning-to-end online automation of real estate transactions | ||
Patent #
US 6,684,196 B1
Filed 08/30/1999
|
Current Assignee
ZipRealty Incorporated
|
Sponsoring Entity
ZipRealty Incorporated
|
Computer-implemented securities trading system with a virtual specialist function | ||
Patent #
US 6,505,174 B1
Filed 11/02/1998
|
Current Assignee
CFPH LLC
|
Sponsoring Entity
CFPH LLC
|
Method and apparatus for assisted GPS | ||
Patent #
US 20030011511A1
Filed 06/03/2002
|
Current Assignee
Google Technology Holdings LLC
|
Sponsoring Entity
Google Technology Holdings LLC
|
Method of despreading GPS spread spectrum signals | ||
Patent #
US 6,525,689 B2
Filed 05/22/2001
|
Current Assignee
NXP B.V.
|
Sponsoring Entity
Koninklijke Philips N.V.
|
Radio communication terminal unit and method of transmitting location information | ||
Patent #
US 20030027582A1
Filed 07/02/2002
|
Current Assignee
Beijing Xiaomi Mobile Software Co. Ltd.
|
Sponsoring Entity
Beijing Xiaomi Mobile Software Co. Ltd.
|
Methods and apparatus for brokering transactions | ||
Patent #
US 6,598,026 B1
Filed 05/25/1999
|
Current Assignee
Nextag Incorporated
|
Sponsoring Entity
NEXTAG.COM INCORPORATED
|
System for electronic barter, trading and redeeming points accumulated in frequent use reward programs | ||
Patent #
US 6,594,640 B1
Filed 06/23/2000
|
Current Assignee
Signature Systems LLC
|
Sponsoring Entity
Richard Postrel
|
Method of determining the position of a mobile unit | ||
Patent #
US 6,618,671 B2
Filed 09/20/2001
|
Current Assignee
NXP B.V.
|
Sponsoring Entity
FOX DIGITAL, Koninklijke Philips N.V.
|
System and method for reference data processing in network assisted position determination | ||
Patent #
US 20030210656A1
Filed 12/13/2002
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
-
|
Combined order limit for a group of related transactions in an automated dealing system | ||
Patent #
US 6,343,278 B1
Filed 09/03/1999
|
Current Assignee
CME Group Incorporated
|
Sponsoring Entity
NEX Group plc
|
Method and apparatus for electronic barter system | ||
Patent #
US 20020004759A1
Filed 05/04/2001
|
Current Assignee
BIG VINE LLC
|
Sponsoring Entity
BIG VINE LLC
|
Automated exchange for matching bids between a party and a counterparty based on a relationship between the counterparty and the exchange | ||
Patent #
US 6,405,180 B2
Filed 11/05/1998
|
Current Assignee
International Securities Exchange
|
Sponsoring Entity
International Securities Exchange LLC
|
System and method for conducting securities transactions over a computer network | ||
Patent #
US 6,408,282 B1
Filed 04/15/1999
|
Current Assignee
UBS Business Solutions AG
|
Sponsoring Entity
WIT CAPITAL CORPORATION
|
Information presentation and management in an online trading environment | ||
Patent #
US 6,415,320 B1
Filed 04/04/2000
|
Current Assignee
eBay Inc.
|
Sponsoring Entity
eBay Inc.
|
Automated system for conditional order transactions in securities or other items in commerce | ||
Patent #
US 6,418,419 B1
Filed 07/23/1999
|
Current Assignee
5th Market Incorporated
|
Sponsoring Entity
5th Market Incorporated
|
Enhancements to location-based services functionality in a radio telecommunication network | ||
Patent #
US 20020094822A1
Filed 12/13/2001
|
Current Assignee
Cluster LLC
|
Sponsoring Entity
Cluster LLC
|
Method and system for visual analysis of investment strategies | ||
Patent #
US 6,493,681 B1
Filed 08/11/1999
|
Current Assignee
Leonid M. Tertitski
|
Sponsoring Entity
Leonid M. Tertitski
|
Facilitating internet commerce through internetworked auctions | ||
Patent #
US 6,202,051 B1
Filed 02/19/1999
|
Current Assignee
eBay Inc.
|
Sponsoring Entity
Mercexchange LLC
|
System, method and computer program product for online financial products trading | ||
Patent #
US 6,233,566 B1
Filed 03/18/1999
|
Current Assignee
GHR SYSTEMS INC.
|
Sponsoring Entity
ULTRAPRISE LOAN TECHNOLOGIES INC.
|
Computer implemented marketing system | ||
Patent #
US 6,236,977 B1
Filed 01/04/1999
|
Current Assignee
Real Living Incorporated
|
Sponsoring Entity
INSIGNIA IP INC.
|
Certain diterpenes and extracts or concentrates of curcuma amada containing them for use as medicaments | ||
Patent #
US 6,235,287 B1
Filed 09/30/1999
|
Current Assignee
EUROVITA AS
|
Sponsoring Entity
IDA DEVELOPMENT AS
|
Method and system for approving a password | ||
Patent #
US 20010004759A1
Filed 02/05/2001
|
Current Assignee
Nokia Networks
|
Sponsoring Entity
Nokia Networks
|
Method and system for confirmation and settlement for financial transactions matching | ||
Patent #
US 6,247,000 B1
Filed 06/16/1998
|
Current Assignee
Citibank South Dakota NA
|
Sponsoring Entity
CROSSMARK Incorporated
|
Electronic contract broker and contract market maker infrastructure | ||
Patent #
US 20010034663A1
Filed 02/21/2001
|
Current Assignee
Vadim Kaydanov, Eugene Teveler
|
Sponsoring Entity
Vadim Kaydanov, Eugene Teveler
|
Interactive securities trading system | ||
Patent #
US 6,014,643 A
Filed 08/26/1996
|
Current Assignee
Vernon F Minton
|
Sponsoring Entity
Vernon F Minton
|
Method and apparatus for trading securities electronically | ||
Patent #
US 6,029,146 A
Filed 08/21/1996
|
Current Assignee
Citibank South Dakota NA
|
Sponsoring Entity
CROSSMARK Incorporated
|
Method and apparatus for using search agents to search plurality of markets for items | ||
Patent #
US 6,085,176 A
Filed 03/08/1999
|
Current Assignee
eBay Inc.
|
Sponsoring Entity
Mercexchange LLC
|
Method and apparatus for automating negotiations between parties | ||
Patent #
US 6,112,189 A
Filed 03/19/1997
|
Current Assignee
OPTIMARK INC.
|
Sponsoring Entity
OPTIMARK INC.
|
Real estate appraisal method and device for standardizing real property marketing analysis by using pre-adjusted appraised comparable sales | ||
Patent #
US 5,857,174 A
Filed 11/21/1997
|
Current Assignee
John W. Dugan
|
Sponsoring Entity
John W. Dugan
|
Computer method and system for intermediated exchange of commodities | ||
Patent #
US 5,873,071 A
Filed 05/15/1997
|
Current Assignee
ITG Software Solutions Inc.
|
Sponsoring Entity
-
|
Electronic security/stock trading system with voice synthesis response for indication of transaction status | ||
Patent #
US 5,926,801 A
Filed 04/03/1996
|
Current Assignee
Fujitsu Limited
|
Sponsoring Entity
-
|
Digital-timeshare-exchange | ||
Patent #
US 5,926,793 A
Filed 09/10/1996
|
Current Assignee
Vacation Exchange LLC
|
Sponsoring Entity
Rafael Amezcua Arreola
|
Negotiated matching system | ||
Patent #
US 5,924,082 A
Filed 06/07/1995
|
Current Assignee
GENEVA BRANCH OF REUTERS TRANSACTION SERVICES LIMITED
|
Sponsoring Entity
-
|
Data processing system and method for facilitating transactions in diamonds | ||
Patent #
US 5,950,178 A
Filed 07/29/1997
|
Current Assignee
DIAMONDS.NET LLC
|
Sponsoring Entity
-
|
System and method for trading having a principal market maker | ||
Patent #
US 5,963,923 A
Filed 06/03/1997
|
Current Assignee
Technology Research Group LLC
|
Sponsoring Entity
-
|
Offer matching system having timed match acknowledgment | ||
Patent #
US 5,727,165 A
Filed 12/27/1994
|
Current Assignee
Reuters Limited
|
Sponsoring Entity
Reuters Limited
|
Method and apparatus for a cryptographically assisted commercial network system designed to facilitate buyer-driven conditional purchase offers | ||
Patent #
US 5,794,207 A
Filed 09/04/1996
|
Current Assignee
Priceline.com LLC
|
Sponsoring Entity
Priceline.com LLC
|
Online transaction processing system for bond trading | ||
Patent #
US 5,809,483 A
Filed 11/14/1997
|
Current Assignee
Nasdaq OMX Group Incorporated
|
Sponsoring Entity
Nasdaq Stock Market LLC
|
Geographic specific information search system and method | ||
Patent #
US 5,852,810 A
Filed 01/29/1996
|
Current Assignee
STUDENT HOUSING NETWORK INC. FORMERLY KNOWN AS S.H. NETWORK INC.
|
Sponsoring Entity
STUDENT HOUSING NETWORK INC. FORMERLY KNOWN AS S.H. NETWORK INC.
|
Currency and barter exchange debit card and system | ||
Patent #
US 5,592,376 A
Filed 06/17/1994
|
Current Assignee
COMMONWEAL INCORPORATED
|
Sponsoring Entity
COMMONWEAL INCORPORATED
|
Interactive computer system to match buyers and sellers of real estate, businesses and other property using the internet | ||
Patent #
US 5,664,115 A
Filed 06/07/1995
|
Current Assignee
Intel Corporation
|
Sponsoring Entity
Fraser Richard
|
Crossing network utilizing optimal mutual satisfaction density profile | ||
Patent #
US 5,689,652 A
Filed 04/27/1995
|
Current Assignee
OPTIMARK INC.
|
Sponsoring Entity
OPTIMARK TECHNOLOGIES INC.
|
Computerized system for developing multi-party property equity exchange scenarios | ||
Patent #
US 5,500,793 A
Filed 09/02/1993
|
Current Assignee
EQUITRADE
|
Sponsoring Entity
EQUITRADE
|
System for locating and communicating with mobile vehicles | ||
Patent #
US 5,432,841 A
Filed 07/10/1992
|
Current Assignee
Neil A. Rimer
|
Sponsoring Entity
Neil A. Rimer
|
Goal-directed financial asset management system | ||
Patent #
US 5,126,936 A
Filed 09/01/1989
|
Current Assignee
CHAMPION SECURITIES
|
Sponsoring Entity
CHAMPION SECURITIES
|
Anonymous matching system | ||
Patent #
US 5,136,501 A
Filed 05/26/1989
|
Current Assignee
Reuters Transaction Services Limited
|
Sponsoring Entity
Reuters Limited
|
Distributed matching system | ||
Patent #
US 5,077,665 A
Filed 05/25/1989
|
Current Assignee
REUTERS TRANSACTIONS SERVICES LIMITED
|
Sponsoring Entity
Reuters Limited
|
Automated futures trading exchange | ||
Patent #
US 4,903,201 A
Filed 11/03/1983
|
Current Assignee
eSpeed Incorporated
|
Sponsoring Entity
SIBLEY H.C. JR.
|
Automated securities trading system | ||
Patent #
US 4,674,044 A
Filed 01/30/1985
|
Current Assignee
Bank of America Corp.
|
Sponsoring Entity
Merrill Lynch Pierce Fenner Smith Incorporated
|
Automated stock exchange | ||
Patent #
US 4,412,287 A
Filed 09/15/1982
|
Current Assignee
BRADDOCK W. DAVID III
|
Sponsoring Entity
BRADDOCK W. DAVID III
|
INSTINET COMMUNICATION SYSTEM FOR EFFECTUATING THE SALE OR EXCHANGE OF FUNGIBLE PROPERTIES BETWEEN SUBSCRIBERS | ||
Patent #
US 3,573,747 A
Filed 02/24/1969
|
Current Assignee
Jerome M. Pustilnik, Herbert R. Behrens, John T. Gilmore Jr, Charles W. Adams
|
Sponsoring Entity
Jerome M. Pustilnik, Herbert R. Behrens, John T. Gilmore Jr, Charles W. Adams
|
26 Claims
- 1. . A positioning apparatus of a mobile terminal, comprising:
a positioning server, independently constructed on a network, for collecting, storing, and managing assistant data that includes orbit information and correction information of a satellite, and for providing one of the assistant data and position information using the assistant data in response to an external request;
wherein the positioning server provides the position information of the terminal subject to positioning in response to the request for the position information of the terminal subject to positioning created from at least one network among a plurality of networks that share the positioning server. - View Dependent Claims (2, 3, 4)
- 5. . A positioning method of a mobile terminal using a positioning server independently constructed on a network, the method comprising the steps of:
receiving a request for position information of the mobile terminal;
calculating physical position information corresponding to logical position information about a visited network of the mobile terminal in response to the position information request;
transferring the physical position information to the positioning server;
receiving assistant data of the mobile terminal from the positioning server;
calculating the position of the mobile terminal using the assistant data; and
transferring a result of calculation for the position of the mobile terminal. - View Dependent Claims (6, 7, 8, 9, 10, 11)
- 12. . A positioning method of a mobile terminal that is roaming to a visited network provided with a position calculation service module constructed independently of a positioning service permission module, the method comprising the steps of:
receiving a request to provide position information of the mobile terminal in a home network;
providing access information for a position calculation service module of the visited network to the mobile terminal;
accessing the position calculation service module of the visited network using the access information by the mobile terminal; and
calculating and determining the position of the mobile terminal by the position calculation service module. - View Dependent Claims (13, 14, 15, 16)
- 17. . A positioning method of a mobile terminal in a network in which a position calculation service module is constructed separately from a positioning service permission module, the method comprising the steps of:
receiving a request for position information of the mobile terminal by the positioning service permission module of a home network;
providing access information for a position calculation service module located in a place that is near to the mobile terminal to the mobile terminal;
accessing the position calculation service module using the access by the mobile terminal; and
calculating the position of the mobile terminal using assistance data by the position calculation service module. - View Dependent Claims (18, 19, 20, 21)
- 22. . A positioning method of a mobile terminal in a network in which a position calculation service module is constructed separately from a positioning service permission module, the method comprising the steps of:
if the position information of the mobile terminal is requested, receiving access information for a position calculation service module that is located in a place near to the mobile terminal from a home network by the mobile terminal;
accessing the position calculation service module using the accessing information; and
exchanging signal required for calculation of the position and data with the position calculation service module by the mobile terminal. - View Dependent Claims (23, 24, 25, 26)
1 Specification
This application claims priority to an application entitled “Positioning Apparatus of Mobile Terminal Using Positioning Server Independently Constructed on Network and Method Thereof” filed in the Korean Industrial Property Office on Apr. 21, 2004 and assigned Serial No. 2004-27639, the contents of which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates generally to a positioning apparatus of a mobile terminal using a positioning server independently constructed on a network and a method thereof, and more particularly to a positioning apparatus and method of a mobile terminal using a positioning server independently constructed on a network, such that the positioning of a roaming mobile terminal using an SUPL (Secure User Plane Location) using an IP (Internet Protocol)-based network is performed. Additionally, the present invention is applicable to a positioning service on a control plane in addition to a positioning service on a user plane.
2. Description of the Related Art
As mobile terminals become more lightweight and small-sized, users'"'"' abilities to carry and use their mobile terminals have increased. Additionally, under the environment of a global mobile communication system, many users intend to receive application services (for example, traffic and living information) using position information of the mobile terminals. Accordingly, in some countries or mobile communication network territories (for example, territories of Korean mobile communication networks such as SK Telecom, KTF, or Japanese and European mobile communication networks such as NTT DoCoMo, Sprint PCS, KDDI, or Vodafone), mobile terminal position information acquisition systems using such mobile terminals have already been commercialized.
In order to provide the application services using position information, as described above, a process of positioning a mobile terminal should precede. That is, the application services using position information should be provided based on geographical position information of the mobile terminal, which is obtained in the process of positioning the mobile terminal.
Referring to
The RNCs 121 and 131 can be classified as a serving RNC (SRNC), a drift RNC (DRNC), or a controlling RNC (CRNC) according to their operation. That is, the RNC that manages information of UEs that belong to the corresponding RNC and controls data transmission between UEs and the CN 110 through an interface lu is called an SRNC. The RNC that relays data transmission between the UE belonging to another RNC and the RNC to which the UE belongs (for example, an SRNC) is called a DRNC. The RNC that controls the respective base stations (i.e., node Bs) is called a CRNC.
In
In the mobile communication network as described above, diverse positioning techniques for positioning the UE have been used, and three representative techniques will be described herein below.
A first method performs the positioning of the UE in the unit of a cell using information of a cell that is the nearest cell to the UE or that manages the UE. A second method is a network-based positioning method for calculating the strength of a signal using a measurement signal between the node B and UE or a time of arrival (TOA) or a time difference of arrival (TDOA), which is obtained from the transfer time of radio waves, and positioning the UE by applying a triangular surveying method to the TOA or TDOA. A third method for positioning the UE uses a GPS (Global Positioning System) developed by the United States Department of Defense. By supplementing and applying the GPS-technology among the positioning method using the GPS to a mobile communication system, a network-assisted GPS (network-AGPS) has been proposed.
Conventionally, if a location service client (LCS client) outside a network requests the position of a specified UE, a preparatory process for performing the positioning of the UE is performed, a signal required for the positioning is measured, and the position of the UE is calculated according to the measured signal. More specifically, in the preparatory process, a privacy indicator such as a privacy limit of the UE is examined, resources of the network are allocated, and a positioning technique is selected according to a QoS (Quality of Service) requested by an LCS client and the performance of the UE and the network.
Additionally, the position measurement process is performed between a UTRAN (Universal Terrestrial Random Access Network) and the UE, such that the signal required for the position measurement is acquired according to the positioning technique selected in the preparatory process, and then the position of the UE is calculated. In this case, the UE should be an individual UE for which the MSISDN (Mobile Subscriber ISDN Number) or IMSI (International Mobile Subscriber Identity) is already known.
The position measurement process described above is frequently performed if the UE deviates from a home gateway mobile location center (GMLC) at which the UE itself is registered in the CN and is located at another GMLC, or if the positioning service is requested by an external LCS client or the UE itself. In this case, the GMLC manages position information of UEs located in PLMN (Public Land Mobile Network). A PLMN is a geographically or logically separable mobile communication network, and at least one GMLC may exist in one PLMN.
Referring to
The requesting GMLC 111 requests the home PLMN information of the UE_A 155 from an HLR/HSS (Home Location Register/Home Subscriber Server) 115 in step S13, and receives the home PLMN information from the HLR/HSS 115 in step S15. The HLR/HSS 115 is a server that stores registrants information and roaming information of the stored UEs, and responds to the request of the requesting GMLC 111 using the stored registrants information of the UEs. That is, the HLR/HSS provides the home PLMN information of the UE_A 155 to the requesting GMLC 111 in step S15.
The requesting GMLC 11 that has received the home PLMN information of the UE_A 155 at step S15 requests the information about the PLMN in which the UE_A 155 is located from the home GMLC 113 of the UE_A 155 using the home PLMN information in step S17. The home GMLC 113 performs a privacy authentication process in step S19, receives visited PLMN information of the UE_A 155 from the HLR/HSS 115 in steps S21 and S23, and requests the position information of the UE_A 155 from the GMLC 117 of the PLMN that the UE_A 155 is visiting, using the visited PLMN information in step S25. Because the GMLC 117 is the GMLC of the PLMN that the UE_A 155 is visiting, it is called a ‘visited GMLC’.
The visited GMLC 117 in the PLMN that the UE_A 155 is visiting, an MSC/SGSN (Mobile-services Switching Center/serving GPRS (General Packet Radio Service) Support Node) 119, a RAN (Radio Access Network), and the UE_A 155 calculate the position of the UE_A 155.
Typically, in the mobile communication network, a positioning method such as a cell identification technique, a TDOA technique, an A-GPS technique, etc., is used as described above. Accordingly, the PLMN that the UE_A 155 is visiting can measure the position of the UE_A 155 using any one of the three methods.
Meanwhile, the measurement of the position performed by the above-described methods may be classified into two methods according to the burden of network resources or the subject of position calculation. That is, the position measurement method may be classified into a UE-based method for calculating the position of the UE itself, using pseudo-range information and positioning-assisted information, and a UE-assisted method for obtaining pseudo-range information using a GPS satellite signal acquisition assistant data (for example, A-GPS assistant data) and then transferring the pseudo-range information to the corresponding RNC that manages the LCS service of the UE for the network'"'"'s calculation of the position of the UE.
In the process illustrated
If the position of the UE_A 155 is calculated by one of the UE-based and UE-assisted methods in step S27, the visited GMLC 117 transfers its result (i.e., the position information of the UE_A) to the home GMLC 113. The home GMLC 113 performs the authentication process again at step S31, and then transfers the position information of the UE_A 155 transferred from the visited GMLC 117 to the client 160 through the requesting GMLC 111 in steps S33 and S35.
Accordingly, the home network 210 that has received the request for the position information of the terminal A authenticates the position information request and the privacy protection function of the terminal A. If it is possible to respond to the position information request, the home network 210 requests the position information of the terminal A from the position calculation service module 223 of the visited network 220 using the position calculation service module 213, and then calculates the position of the terminal A after receiving the response to the position information request.
However, the conventional method of positioning the mobile terminal as described above, has the drawbacks in that if there is no position calculation system (for example, LMU (Location Measurement Unit), or PDE) that is additionally provided according to mobile communication service providers in the network, it cannot provide the positioning service according to the request of the external LCS client or mobile terminal.
Consequently, if the network that is not provided with the position calculation system receives the positioning service request from the mobile terminal, it must respond with a failure to the request or use the position calculation system provided another network by accessing the network that can prove the positioning service.
However, in using the position calculation system provided in another network that can provide the positioning service, the network that can provide the positioning service may reject the use permission of the position calculation system or may exclusively use the positioning system.
Additionally, when a home network performs the positioning of a mobile terminal that deviates from the home network and is located in another network, the accuracy of assistant data to be transferred to the terminal may deteriorate. This causes the accuracy of the positioning to deteriorate if the positioning is performed using the PDE.
Accordingly, the present invention has been designed to solve the above and other problems occurring in the prior art, and an object of the present invention is to provide a positioning apparatus of a mobile terminal and a method thereof, which obtain an accurate positioning result with a reduced cost for implementation of a positioning system.
Another object of the present invention is to provide a positioning apparatus and method of a mobile terminal for positioning the mobile terminal by sharing a positioning server independently implemented on a network with other networks.
Another object of the present invention is to provide a positioning apparatus and method of a mobile terminal that can separate a positioning service permission module and a position calculation service module that are required for the positioning of the mobile terminal from each other and perform the positioning of the mobile terminal using the separated modules.
In order to accomplish the above and other objects, there is provided a positioning apparatus of a mobile terminal. The apparatus includes a positioning server, independently constructed on a network, for collecting, storing, and managing assistant data that includes orbit information and correction information of a satellite, and providing the assistant data or position information using the assistant data in response to an external request. The positioning server provides the position information of the terminal subject to positioning in response to the request for the position information of the terminal subject to positioning created from at least one network among a plurality of networks that share the positioning server.
Additionally, there is provided a positioning method of a mobile terminal using a positioning server independently constructed on a network. The method includes the steps of receiving a request for position information of a specified mobile terminal, calculating physical position information corresponding to logical position information about a visited network of the mobile terminal in response to the position information request, transferring the physical position information to the positioning server, receiving assistant data of the mobile terminal from the positioning server, calculating the position of the mobile terminal using the assistant data, and transferring a result of calculation for the position of the mobile terminal.
Additionally, there is provided a positioning method of a mobile terminal that is roaming to a visited network provided with a position calculation service module constructed independently of a positioning service permission module. The method includes the steps of receiving, in a home network, a request to provide position information of the mobile terminal, providing, by the home network, access information for a position calculation service module of the visited network to the mobile terminal, directly accessing the position calculation service module of the visited network using the access information by the mobile terminal, and calculating and determining the position of the mobile terminal by the position calculation service module.
The above and other objects, features, and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
Preferred embodiments of the present invention will be described in detail hereinafter with reference to the accompanying drawings. In the following description of the present invention, the same drawing reference numerals are used for the same elements even in different drawings. Additionally, a detailed description of known functions and configurations incorporated herein will be omitted when it may obscure the subject matter of the present invention.
If a terminal B, which is registered in the home network 310, is roaming to the visited network 320, the positioning of the terminal B is performed in a manner that an authentication procedure and so on is performed with respect to a request for a positioning service of the terminal B using the SLC 311 provided in the home network 310. Thereafter, functions related to the position calculation (for example, creation of assistant data, position calculation, etc.) are performed using the SPC 330 implemented independently of the home network 310.
The SPC 330 is a function module repeatedly owned by the respective network. In the embodiment of the present invention, this function module is implemented independently of the networks, and is shared by the respective networks. Functions performed by the SPC 330 may be a position calculation, assistant data delivery, retrieval function, etc. That is, if the position information request is permitted, the SPC 330 processes only work for the requested position calculation of the corresponding terminal.
A plurality of SPCs may be provided for the respective networks. However, it is also possible to implement an SPC in a certain network, and other networks share the SPC. If plurality of SPCs 330 exist, it is preferable to perform the positioning by selecting the SPC that is located nearest to the terminal subject to positioning.
Before performing the position calculation of the roaming mobile terminal, the SLC 311 or 321 performs a search for data between HLR and VLR in order to support necessary procedures of the mobile terminal, for example, authentication (or authorization), privacy checking, charging, roaming support, etc. That is, the SLC 311 or 321 determines whether to permit or return the position information request from the external client or the terminal itself.
Referring to
An SUPL agent 410 that has received a request for position information of a terminal 450 from an outside (for example, an external client) creates and transfers a position information request message MLP_SLIR using an MLP (Mobile Location Protocol) to a home SLC 420 in step S401. In this case, the SUPL agent 410 is a module that is included in all SUPL-serviceable network devices, and creates an MLP message for the SUPL service.
Referring to
The home SLC 420 performs the authentication of the position-requesting client and the user in step S403.
The home SLC 420 authenticates the external client that has requested the position information of the terminal by checking ‘LCS-Client_ID’ included in the received ‘MLP_SLIR’. For example, the home SLC confirms if the external client is a company registered to use the position information.
The home SLC confirms if the user of the terminal 450 the position of which is requested permits the third party to receive the position information. Accordingly, the home SLC 420 checks a pre-stored privacy profile of the terminal 450.
If it is possible to provide the corresponding service to the client that has requested the position information in step S403, the home SLC 420 informs the corresponding terminal 450 that the position information is requested, and creates and transfers a message SUPL_INIT for initializing the positioning process to the terminal 450 in step S405.
The structure of the message SUPL_INIT transferred to the terminal 450 is exemplarily illustrated in
The terminal that has received the message SUPL_INIT determines whether to permit or return the positioning request by confirming ‘notification’ included in the message SUPL_INIT. If it is determined to permit the positioning request, the terminal 450 transfers a positioning process start message SUPL_START to the home SLC 420 as a response to the message SUPL_INIT in step S407.
The structure of the message SUPL_START transferred to the home SLC 420 is exemplarily illustrated in
Optionally, if it is possible for the terminal to additionally transfer information that is helpful when the network calculates the position of the cell in which the terminal itself presently exists, this information can also be included in the message SUPL_START to be transmitted. For example, if the terminal is in a GSM network, an NMR (Network to Mobile Radio signal) is a parameter that indicates a TA (Time of Arrival) of a radio signal transferred from the network to the terminal, a RXLEV (Receiver of power level) of a radio signal transferred to the terminal, etc.
In this case, ‘ms-capability’ includes a kind of A-GPS (i.e., UE-assisted A-GPS or UE-based A-GPS) used in the terminal 450 and positioning protocol information (such as RRLP, RRC, IS-801, etc.) to be used by the terminal 450.
Additionally, ‘Location_area_ID’ is a logical ID that indicates a presently roaming area, and instructs the home SLC 420 to search for a visited SLC or visited network 430 in which the terminal 450 is located.
The home SLC 420 searches for the visited network information (for example, the visited SLC) 430 in which the terminal 450 is located by checking ‘Location_area_ID’ included in ‘SUPL_START’, and transmits ‘Location_area_ID’ to the visited SLC 430 using the RLP (Roaming Location Protocol) in step S409. This obtains physical position information rough_position corresponding to ‘Location_area_ID’.
In this case, a message RLP_REQ transmitted from the home SLC 420 to the visited SLC 430 may include ‘session_ID’ and ‘Location_area_ID, and may further include ‘NMR’ as exemplarily illustrated in
The visited SLC 430 that has received ‘RLP_REQ’ from the home SLC 420 calculates physical position information corresponding to ‘Location_area_ID’ in step S411, includes the result in ‘RLP_RSP’, and transfers ‘RLP_RSP’ to the home SLC 420 in step S413. It is preferable that the physical position information rough_position calculated at step S411 is expressed using longitude and latitude values.
The ‘RLP_RSP’ includes ‘session_ID’ and ‘rough_Position’ as illustrated in
If ‘PQoS’ is set to ‘low accuracy’ in step S401, ‘rough_position’ information may be the final position information to be sent to the SUPL agent 410. That is, the home SLC 420 transfers ‘rough_position’ received in step S413 to the SUPL agent 410, and then terminates the corresponding session.
However, if ‘PQoS’ is set to ‘high accuracy’, steps following step S413 proceed as illustrated in
Referring to
The home SLC 420 and SPC 440 exchange data with each other through the networks. In the case of data exchange between the home SLC 420 and SPC 440, the security should be strengthened in order to reduce the privacy infringement problem. Accordingly, all messages transmitted between the home SLC 420 and SPC 440 may be encrypted in addition to the user of a separate ‘pseudo_session_ID’.
A plurality of SPCs may be distributed in different areas. An SPC may operate independently, and may be included in the home SLC or visited SLC. The home SLC 420 selects SPC 440 existing in the nearest place to the terminal 450, and requests the assistant data for the position calculation of the terminal 450 to the SPC 440.
The SPC 440 that has received the request for the assistant data creates the assistant data on the basis of ‘rough_Position’ included in ‘LLP_RSP’ in step S417. The SPC 440 sends ‘LLP_RSP’ that includes ‘pseudo_session_ID’ and ‘assistant data’ as illustrated in
The home SLC 420 that has received the assistant data of the terminal 450 from the SPC 440 creates and transfers a SUPL response message SUPL_RSP for informing the terminal 450 of the reception of the assistant data to the terminal 450 in step S421.
Referring to
The terminal 450 that has received ‘SUPL_RSP’ creates and transfers a PDINIT (Position Determination Initiation) message that includes ‘paseudo_session_ID’ included in ‘SUPL_RSP’ and cell information in which the terminal 450 is located (See
Additionally, if the terminal 450 can optionally transfer information that is helpful when the network calculates the position of the cell in which the terminal 450 is presently located (such as cell information), such information can also be included in the PDINIT message. For example, if the terminal is in a GSM network, an NMR (Network to Mobile Radio signal) is a parameter that indicates a TA (Time of Arrival) of a radio signal transferred from the network to the terminal, a RXLEV (Receiver of power level) of a radio signal transferred to the terminal, etc. Because the cell information is information that the terminal 450 may have once transferred at step S407, it may repeatedly be transferred at step S423. However, because the cell information transferred at step S407 may be different from the cell information transferred at step S423 due to the change of the radio environment where the terminal 450 exists with the lapse of time, it is preferable that the terminal adds the cell information to the PDINIT message.
The SPC 440 sends and receives PDMESS (Position Determination Message) messages (such as RRLP, IS-801, RRC, etc.) to and from the terminal 450, and exchanges signals required for the positioning and data with the terminal 450 in step S425.
Thereafter, SPC 440 calculates the final position of the terminal 450, and creates and transmits a PDRPT message including a result of calculation ‘Accurate_Position’ to the home SLC 420 in step S427. The PDRPT message includes ‘pseudo_session_ID’ and ‘Accurate_Position’ as illustrated in
The home SLC 420 identifies the terminal that corresponds to the result of positioning by checking ‘pseudo_session_ID included in the received PDRPT message, and then reports the final position of the terminal to the SUPL agent that requested the positioning of the corresponding terminal in step S429. In this case, the home SLC 420 uses ‘MLP_SLIA’ as illustrated in
Finally, the home SLC 420 transmits an SUPL end message including ‘session_ID’ to the terminal 450 to terminate the corresponding session in step S431.
Referring to
First, if the terminal 450 that includes the SUPL agent requests the positioning of the terminal itself by transmitting the SUPL start message SUPL_START (See
An example of the message RLP_REQ transmitted from the home SLC 420 to the visited SLC 430 is illustrated in
The visited SLC 430 that has received ‘RLP_REQ’ from the home SLC 420 calculates physical position information corresponding to ‘Location_area_ID’ in step S505, includes the result of calculation in ‘RLP_RSP’ (See
If ‘PQoS’ is set to ‘low accuracy’ in step S501, ‘rough_position’ information may be the final position information to be sent to the SUPL agent 410. That is, the home SLC 420 transfers ‘rough_position’ received at step S507 to the terminal 450, and then terminates the corresponding session. Otherwise, the steps following step S507 proceed as illustrated in
The home SLC 420 requests the assistant data for calculating more accurate position information to SPC 440 by transferring the ‘rough_position’ information to SPC 440 existing outside the network or SPC existing in the visited network in step S509. Because the home SLC 420 and SPC 440 use the LLP (Location Protocol) protocol, the SLC 420 requests the assistant data to SPC 440 using ‘LLP_REQ’ (See
The structure of ‘LLP_REQ’ has been explained with reference to
A plurality of SPCs may be distributed in plural areas. An SPC may operate independently, and may be included in the home SLC or visited SLC. The home SLC 420 selects SPC 440 existing in the nearest place to the terminal 450, and requests the assistant data for the position calculation of the terminal 450 to the SPC 440.
The SPC 440 that has received the request for the assistant data creates the assistant data on the basis of ‘rough_Position’ included in ‘LLP_RSP’ in step S511. Thereafter, the SPC 440 sends ‘LLP_RSP’ that includes ‘pseudo_session_ID’ and ‘assistant data’ as illustrated in
The home SLC 420 that has received the assistant data of the terminal 450 from the SPC 440 creates and transfers a SUPL response message SUPL_RSP (See
The terminal 450 that has received ‘SUPL_RSP’ creates and transfers a PDINIT message (See
Additionally, if the terminal 450 can optionally transfer information that is helpful when the network calculates the position of the cell in which the terminal 450 is presently located (such as cell information), such information can also be included in the PDINIT message. For example, if the terminal is in a GSM network, an NMR (Network to Mobile Radio signal) is a parameter that indicates a TA (Time of Arrival) of a radio signal transferred from the network to the terminal, a RXLEV (Receiver of power level) of a radio signal transferred to the terminal, etc.
Because the cell information is information that the terminal 450 may have once transferred in step S501, it may repeatedly be transferred in step S517. However, because the cell information transferred in step S501 may be different from the cell information transferred in step S517 due to the change of the radio environment where the terminal exists with the lapse of time, it is preferable that the terminal 450 adds the cell information to the PDINIT message.
The SPC 440 sends/receives PDMESS (Position Determination Report) messages (such as RRLP, IS-801, RRC, etc.) to and from the terminal 450, and exchanges signals required for the positioning and data with the terminal 450 in step S519.
Thereafter, SPC 440 calculates the final position of the terminal 450, and creates and transmits a PDRPT message (See
The home SLC 420 transmits an SUPL end message including ‘session_ID’ to the terminal 450 to terminate the corresponding session in step S525.
As described above, according to the present invention, the positioning service permission module that includes the positioning service authentication and the privacy protection function and the position calculation service module that performs the creation of assistant data of the terminal and the position calculation using the assistant data are separated from each other, but a plurality of networks can share the independently implemented position calculation service module. Accordingly, an accurate positioning result can be obtained with a cost for the implementation of the positioning system being reduced.
Additionally, the present invention can prevent a network capable of providing the positioning service from exclusively using the position calculation system, even if the mobile terminal subject to positioning deviates from the home network and is located in another network, the accuracy of assistant data to be transferred to the terminal can be improved.
While the present invention has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims.