VEHICLE EMAIL NOTIFICATION SYSTEM AND METHOD
-
0Associated
Cases -
0Associated
Defendants -
0Accused
Products -
27Forward
Citations -
0
Petitions -
14
Assignments
First Claim
1. . A method of providing vehicle information to an owner or other recipient, comprising the steps of:
- establishing one or more triggers;
monitoring for the occurrence of a trigger and, in response to determining that the trigger has occurred;
providing vehicle data concerning one or more vehicle conditions to an electronic message generating system;
constructing a notification message that includes information concerning the one or more vehicle conditions; and
sending the notification message to the recipient via an electronic messaging system.
14 Assignments
0 Petitions

Accused Products

Abstract
A vehicle email notification system and method in which triggers are used to initiate the generation and transmission of email messages that provide diverse types of dynamic vehicle information to the owner or other authorized subscriber. The email notifications are triggered by different events, some of which are independent of the vehicle (e.g., a 30 day trigger to provide the subscriber with a monthly vehicle status report), and others of which occur at the vehicle, such as a mileage or low oil life trigger. Upon occurrence of a trigger, the notification system builds and sends to the subscriber an email message that contains the dynamic vehicle information and identifies any detected vehicle condition for which action is needed.
93 Citations
View as Search Results
Vehicle maintenance event reporting method | ||
Patent #
US 7,908,051 B2
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Apparatus and method for providing notification on remote devices | ||
Patent #
US 7,881,661 B2
Filed 06/18/2004
|
Current Assignee
Intellisync Corporation
|
Sponsoring Entity
Intellisync Corporation
|
METHOD FOR PRESENTING INFORMATION TO AN ADVISOR AT A CALL CENTER | ||
Patent #
US 20110010389A1
Filed 07/10/2009
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Telematics based vehicle maintenance client notification | ||
Patent #
US 7,945,359 B2
Filed 03/11/2009
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
VEHICLE TELEMATICS COMMUNICATION FOR PROVIDING IN-VEHICLE REMINDERS | ||
Patent #
US 20110153148A1
Filed 12/17/2009
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
ON-LINE VEHICLE MANAGEMENT SYSTEM | ||
Patent #
US 20100152960A1
Filed 11/20/2009
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Vehicle Rules Engine | ||
Patent #
US 20100292890A1
Filed 05/12/2009
|
Current Assignee
SPX Corporation
|
Sponsoring Entity
SPX Corporation
|
Customer service communication system and method | ||
Patent #
US 20090076835A1
Filed 09/19/2007
|
Current Assignee
Canaday Matthew Rudd, Martin Wendell Eugene, Robert Poon, Canaday Rudd Hoover, Carter Garry Lyle
|
Sponsoring Entity
Canaday Matthew Rudd, Martin Wendell Eugene, Robert Poon, Canaday Rudd Hoover, Carter Garry Lyle
|
Telematics Based Vehicle Maintenance Client Notification | ||
Patent #
US 20090177351A1
Filed 03/11/2009
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
ENHANCED ON-DEMAND DIAGNOSTIC AND MAINTENANCE REPORTING | ||
Patent #
US 20090171684A1
Filed 12/31/2007
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
VEHICLE MAINTENANCE EVENT REPORTING METHOD | ||
Patent #
US 20080027604A1
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
VEHICLE FLEET EMAIL NOTIFICATION METHOD AND SYSTEM | ||
Patent #
US 20080039995A1
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
PRE-DELIVERY INSPECTION AUDITING SYSTEM AND METHOD | ||
Patent #
US 20070173986A1
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
VEHICLE EMAIL SYSTEM AND METHOD WITH FINANCIAL NOTIFICATION FEATURES | ||
Patent #
US 20070179798A1
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
ENROLLMENT METHOD FOR A VEHICLE EMAIL NOTIFICATION SYSTEM | ||
Patent #
US 20070191995A1
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
System and method for providing notification on remote devices | ||
Patent #
US 20050050148A1
Filed 06/18/2004
|
Current Assignee
Intellisync Corporation
|
Sponsoring Entity
Intellisync Corporation
|
VEHICLE TELEMATICS COMMUNICATIONS FOR PROVIDING DIRECTIONS TO A VEHICLE SERVICE FACILITY | ||
Patent #
US 20130046432A1
Filed 06/22/2012
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Method for presenting information to a host vehicle having a user interface | ||
Patent #
US 8,726,188 B2
Filed 10/29/2010
|
Current Assignee
Nissan Motor Co. Ltd.
|
Sponsoring Entity
Nissan Motor Co. Ltd.
|
Vehicle telematics communication for providing in-vehicle reminders | ||
Patent #
US 8,886,393 B2
Filed 12/17/2009
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Pre-delivery inspection auditing system and method | ||
Patent #
US 8,892,297 B2
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Vehicle telematics communications for providing directions to a vehicle service facility | ||
Patent #
US 9,329,049 B2
Filed 06/22/2012
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Rental/car-share vehicle access and management system and method | ||
Patent #
US 9,373,201 B2
Filed 06/26/2014
|
Current Assignee
Enterprise Holdings Incorporated
|
Sponsoring Entity
Enterprise Holdings Incorporated
|
Mobile device-enhanced user selection of specific rental vehicles for a rental vehicle reservation | ||
Patent #
US 9,499,128 B2
Filed 03/15/2013
|
Current Assignee
The Crawford Group Incorporated
|
Sponsoring Entity
The Crawford Group Incorporated
|
Smart key emulation for vehicles | ||
Patent #
US 9,701,281 B2
Filed 03/14/2014
|
Current Assignee
The Crawford Group Incorporated
|
Sponsoring Entity
The Crawford Group Incorporated
|
Rental/car-share vehicle access and management system and method | ||
Patent #
US 9,710,975 B2
Filed 05/13/2016
|
Current Assignee
Enterprise Holdings Incorporated
|
Sponsoring Entity
Enterprise Holdings Incorporated
|
Method and apparatus for driver's license analysis to support rental vehicle transactions | ||
Patent #
US 10,059,304 B2
Filed 03/14/2014
|
Current Assignee
The Crawford Group Incorporated
|
Sponsoring Entity
The Crawford Group Incorporated
|
Smart key emulation for vehicles | ||
Patent #
US 10,308,219 B2
Filed 05/01/2017
|
Current Assignee
The Crawford Group Incorporated
|
Sponsoring Entity
The Crawford Group Incorporated
|
Vehicle email notification with regional-specific content | ||
Patent #
US 7,684,910 B2
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Criteria-based alternative messaging for a vehicle email notification system | ||
Patent #
US 7,756,616 B2
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Vehicle email notification using data from different sources | ||
Patent #
US 7,480,550 B2
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Information management and monitoring system and method | ||
Patent #
US 7,630,802 B2
Filed 06/05/2006
|
Current Assignee
American Vehicular Sciences LLC
|
Sponsoring Entity
Automotive Technologies International Incorporated
|
Method and system for monitoring and retrieving device usage | ||
Patent #
US 7,636,626 B2
Filed 03/28/2005
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
VEHICLE EMAIL NOTIFICATION WITH REGIONAL-SPECIFIC CONTENT | ||
Patent #
US 20080021964A1
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
VEHICLE MAINTENANCE EVENT REPORTING METHOD | ||
Patent #
US 20080027604A1
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
VEHICLE FLEET EMAIL NOTIFICATION METHOD AND SYSTEM | ||
Patent #
US 20080039995A1
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
System and method for data correlation within a telematics communication system | ||
Patent #
US 7,400,954 B2
Filed 09/24/2004
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Corporation
|
Collision avoidance methods and systems | ||
Patent #
US 7,418,346 B2
Filed 08/01/2006
|
Current Assignee
American Vehicular Sciences LLC
|
Sponsoring Entity
Intelligent Technologies International Inc.
|
System for obtaining vehicular information | ||
Patent #
US 7,421,321 B2
Filed 03/17/2005
|
Current Assignee
American Vehicular Sciences LLC
|
Sponsoring Entity
Automotive Technologies International Incorporated
|
Wireless, internet-based system for transmitting and analyzing GPS data | ||
Patent #
US 7,174,243 B1
Filed 05/07/2004
|
Current Assignee
Verizon Patent and Licensing Incorporated
|
Sponsoring Entity
HTI IP LLC
|
VEHICLE DIAGNOSTIC TEST AND REPORTING METHOD | ||
Patent #
US 20070093947A1
Filed 10/21/2005
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
System and method for updating geo-fencing information on mobile devices | ||
Patent #
US 20070143013A1
Filed 12/16/2005
|
Current Assignee
ASSET INTELLIGENCE LLC
|
Sponsoring Entity
ASSET INTELLIGENCE LLC
|
PRE-DELIVERY INSPECTION AUDITING SYSTEM AND METHOD | ||
Patent #
US 20070173986A1
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
VEHICLE EMAIL NOTIFICATION BASED ON CUSTOMER-SELECTED SEVERITY LEVEL | ||
Patent #
US 20070171029A1
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
VEHICLE EMAIL SYSTEM AND METHOD WITH FINANCIAL NOTIFICATION FEATURES | ||
Patent #
US 20070179798A1
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
VEHICLE EMAIL NOTIFICATION USING TEMPLATES | ||
Patent #
US 20070179706A1
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
EMAIL-BASED COMMAND INTERFACE FOR A TELEMATICS-EQUIPPED VEHICLE | ||
Patent #
US 20070179800A1
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
ENROLLMENT METHOD FOR A VEHICLE EMAIL NOTIFICATION SYSTEM | ||
Patent #
US 20070191995A1
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
USER-INITIATED VEHICLE EMAIL NOTIFICATION | ||
Patent #
US 20070179799A1
Filed 12/29/2006
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Method and apparatus for providing automated notification to a customer of a real-time notification system | ||
Patent #
US 6,496,568 B1
Filed 04/12/1999
|
Current Assignee
Avaya Incorporated
|
Sponsoring Entity
Avaya Incorporated
|
Method and telecommunication system for indicating the receipt of a data message | ||
Patent #
US 6,490,444 B1
Filed 10/06/1998
|
Current Assignee
SBC Properties L.P.
|
Sponsoring Entity
SBC Properties L.P.
|
Automated parallel and redundant subscriber contact and event notification system | ||
Patent #
US 6,643,355 B1
Filed 08/26/2002
|
Current Assignee
SEAGUARD TECHNOLOGIES LLC
|
Sponsoring Entity
William Tsumpes
|
Navigation radio for fleet car usage | ||
Patent #
US 6,988,034 B1
Filed 06/26/2003
|
Current Assignee
Harman International Industries Incorporated
|
Sponsoring Entity
Harman International Industries Incorporated
|
Method and system for sending pre-scripted text messages | ||
Patent #
US 20060030298A1
Filed 02/15/2005
|
Current Assignee
General Motors Corporation
|
Sponsoring Entity
General Motors Corporation
|
Telematics system diagnostics logic analyzer | ||
Patent #
US 20060085153A1
Filed 10/07/2004
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Telematics system vehicle tracking | ||
Patent #
US 20060082471A1
Filed 10/12/2004
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Method and system for geographic boundary time triggering of communication with a mobile vehicle | ||
Patent #
US 20060217848A1
Filed 03/24/2005
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Method and system for remotely monitoring vehicle diagnostic trouble codes | ||
Patent #
US 20050068174A1
Filed 09/30/2003
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Centralized facility and intelligent on-board vehicle platform for collecting, analyzing and distributing information relating to transportation infrastructure and conditions | ||
Patent #
US 20050065711A1
Filed 04/05/2004
|
Current Assignee
ZOOM INFORMATION SYSTEMS
|
Sponsoring Entity
ZOOM INFORMATION SYSTEMS
|
Handheld computer based system for collection, display and analysis of engine/vehicle data | ||
Patent #
US 20050090940A1
Filed 10/22/2003
|
Current Assignee
Pajakowski Andrew J., Krutulis Jon E., Shipman Lee Gene, Kimball Michael, Beitzinger Joe, Alex Knight, Michael W. Phillips
|
Sponsoring Entity
Pajakowski Andrew J., Krutulis Jon E., Shipman Lee Gene, Kimball Michael, Beitzinger Joe, Alex Knight, Michael W. Phillips
|
Method for accessing email attachments from a mobile vehicle | ||
Patent #
US 20050086310A1
Filed 10/21/2003
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Web-enabled configurable quality data collection tool | ||
Patent #
US 20050080606A1
Filed 09/24/2004
|
Current Assignee
General Motors Corporation
|
Sponsoring Entity
General Motors Corporation
|
Providing status data for vehicle maintenance | ||
Patent #
US 20050096020A1
Filed 10/30/2003
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
System and method for facilitating the real-time pricing, sale and appraisal of used vehicles | ||
Patent #
US 20050108112A1
Filed 12/30/2004
|
Current Assignee
Bennett Todd, Richard Goldman, John Ellenson
|
Sponsoring Entity
Bennett Todd, Richard Goldman, John Ellenson
|
System and method for driver performance improvement | ||
Patent #
US 6,909,947 B2
Filed 10/12/2001
|
Current Assignee
Motorola Solutions Inc.
|
Sponsoring Entity
Motorola Inc.
|
Method of activating a wireless communication system in a mobile vehicle | ||
Patent #
US 6,915,126 B2
Filed 05/08/2002
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Corporation
|
Methods and apparatus for determining battery characteristics in a vehicle | ||
Patent #
US 20050182536A1
Filed 02/18/2004
|
Current Assignee
Qualcomm Inc.
|
Sponsoring Entity
Qualcomm Inc.
|
Method and apparatus for vehicle operator performance assessment and improvement | ||
Patent #
US 6,925,425 B2
Filed 10/12/2001
|
Current Assignee
Continental Automotive Systems US Incorporated
|
Sponsoring Entity
Motorola Inc.
|
Method and system for remotely monitoring vehicle diagnostic trouble codes | ||
Patent #
US 6,933,842 B2
Filed 09/30/2003
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Corporation
|
Method and system for providing automated vehicle diagnostic function utilizing a telematics unit | ||
Patent #
US 20050187680A1
Filed 02/25/2004
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
System, method, and apparatus for collecting telematics and sensor information in a delivery vehicle | ||
Patent #
US 20050203683A1
Filed 01/10/2005
|
Current Assignee
United Parcel Service Of America Incorporated
|
Sponsoring Entity
United Parcel Service Of America Incorporated
|
Computer system for monitoring actual performance to standards in real time | ||
Patent #
US 20050216331A1
Filed 03/29/2004
|
Current Assignee
United Parcel Service Of America Incorporated
|
Sponsoring Entity
United Parcel Service Of America Incorporated
|
Method and system for remote telltale reset | ||
Patent #
US 20050288830A1
Filed 06/24/2004
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Means and apparatus for control of remote electrical devices | ||
Patent #
US 6,681,110 B1
Filed 06/30/2000
|
Current Assignee
Musco Corporation
|
Sponsoring Entity
Musco Corporation
|
METHOD OF UPLOADING DATA FROM A VEHICLE | ||
Patent #
US 20040054444A1
Filed 09/16/2002
|
Current Assignee
Abeska Edward J., Michael J. Peterson, Daniel A. Hanevich
|
Sponsoring Entity
Abeska Edward J., Michael J. Peterson, Daniel A. Hanevich
|
Vehicle communications system | ||
Patent #
US 6,708,038 B1
Filed 10/23/2000
|
Current Assignee
General Electric Company
|
Sponsoring Entity
General Electric Company
|
Method and system for providing a combined metering and dispatching service with advertising | ||
Patent #
US 20040117332A1
Filed 11/12/2002
|
Current Assignee
TRANSPORTOPIA INC.
|
Sponsoring Entity
TRANSPORTOPIA INC.
|
Threshold-based service notification system and method | ||
Patent #
US 20040128067A1
Filed 12/30/2002
|
Current Assignee
Google Technology Holdings LLC
|
Sponsoring Entity
Google Technology Holdings LLC
|
Applications for a wireless location gateway | ||
Patent #
US 20040198386A1
Filed 01/06/2003
|
Current Assignee
Dennis J. Dupray
|
Sponsoring Entity
Dennis J. Dupray
|
System and method of analyzing aircraft removal data for preventative maintenance | ||
Patent #
US 20040204805A1
Filed 05/03/2004
|
Current Assignee
PT Diagnostics LLC
|
Sponsoring Entity
PT Diagnostics LLC
|
Method and system for vehicle data upload | ||
Patent #
US 20040203696A1
Filed 05/24/2002
|
Current Assignee
General Motors Company
|
Sponsoring Entity
-
|
Method and wireless device for providing a maintenance notification for a maintenance activity | ||
Patent #
US 20040203974A1
Filed 06/19/2002
|
Current Assignee
MOTOROLA INC. PERSONAL COMMUNICATIONS
|
Sponsoring Entity
MOTOROLA INC. PERSONAL COMMUNICATIONS
|
Vehicle information displays | ||
Patent #
US 20040202001A1
Filed 02/10/2004
|
Current Assignee
Gentex Corporation
|
Sponsoring Entity
-
|
Fleet maintenance method | ||
Patent #
US 6,813,526 B1
Filed 10/22/2002
|
Current Assignee
Sensor-Tech Innovations LLC
|
Sponsoring Entity
Golf Car Systems Inc
|
Vehicle tag used for transmitting vehicle telemetry data | ||
Patent #
US 20040249557A1
Filed 05/27/2004
|
Current Assignee
Wherenet Corporation
|
Sponsoring Entity
-
|
Method and system of managing service reminders and scheduling service appointments using mileage estimates and recommended recall bulletins | ||
Patent #
US 20040249531A1
Filed 06/02/2004
|
Current Assignee
ADP Dealer Services Incorporated
|
Sponsoring Entity
-
|
Method, system, and apparatus for dynamic data-driven privacy policy protection and data sharing | ||
Patent #
US 20040267410A1
Filed 06/24/2003
|
Current Assignee
International Business Machines Corporation
|
Sponsoring Entity
International Business Machines Corporation
|
Information processing apparatus and method of processing information for safely executing software input from outside | ||
Patent #
US 20030014661A1
Filed 05/30/2002
|
Current Assignee
Canon Ayutthaya Limited
|
Sponsoring Entity
Canon Ayutthaya Limited
|
Method of activating a wireless communication system in a mobile vehicle | ||
Patent #
US 20030211854A1
Filed 05/08/2002
|
Current Assignee
General Motors Company
|
Sponsoring Entity
General Motors Company
|
Method and apparatus for risk-related use of vehicle communication system data | ||
Patent #
US 20020111725A1
Filed 07/16/2001
|
Current Assignee
John R. Burge
|
Sponsoring Entity
John R. Burge
|
Server for remote vehicle troubleshooting and the like | ||
Patent #
US 20020103582A1
Filed 01/29/2002
|
Current Assignee
Mazda Motor Corporation
|
Sponsoring Entity
Mazda Motor Corporation
|
Internet-based system for monitoring vehicles | ||
Patent #
US 20020173885A1
Filed 03/13/2001
|
Current Assignee
Verizon Patent and Licensing Incorporated
|
Sponsoring Entity
Verizon Patent and Licensing Incorporated
|
Vehicle management system | ||
Patent #
US 20020184062A1
Filed 05/30/2001
|
Current Assignee
Alpine Electronics Incorporated
|
Sponsoring Entity
Alpine Electronics Incorporated
|
Methods, systems and computer program products for coupling electronic mail and relational database functions | ||
Patent #
US 20020194395A1
Filed 05/30/2001
|
Current Assignee
International Business Machines Corporation
|
Sponsoring Entity
International Business Machines Corporation
|
30 Claims
- 1. . A method of providing vehicle information to an owner or other recipient, comprising the steps of:
establishing one or more triggers;
monitoring for the occurrence of a trigger and, in response to determining that the trigger has occurred;
providing vehicle data concerning one or more vehicle conditions to an electronic message generating system;
constructing a notification message that includes information concerning the one or more vehicle conditions; and
sending the notification message to the recipient via an electronic messaging system. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10)
- 11. . A method of providing vehicle information to an owner or other recipient, comprising the steps of:
initiating a first communication session from a central data system to the vehicle via a wireless communication network and establishing a trigger in the vehicle as a result of the first communication session;
monitoring within the vehicle for occurrence of the trigger and, upon determining that the trigger has occurred, initiating a second communication session from the vehicle to the central data system via the wireless communication network;
sending vehicle data to the central data system during the second communication session;
generating a notification message that contains at least some of the vehicle data; and
sending the notification message to the owner via an electronic messaging system. - View Dependent Claims (12, 13, 14, 15, 16)
- 17. . A method of providing vehicle information to an owner or other recipient, comprising the steps of:
automatically providing dynamic vehicle data to a central data system by executing one or more vehicle software-controlled processes at the vehicle that carry out the steps of;
providing dynamic vehicle data to a telematics unit in the vehicle; and
sending the dynamic vehicle data from the telematics unit to the central data system using a cellular communications system; and
automatically generating and sending an email message utilizing at least some of the dynamic vehicle data by executing one or more centralized software-controlled processes that carry out the steps of;
incorporating received dynamic vehicle data into an email message along with static vehicle data and one or more predetermined textual messages; and
sending the email out over a global public computer network using an electronic messaging system. - View Dependent Claims (18, 19, 20, 21, 22, 23, 24, 25)
- 26. . A method of providing a vehicle oil life notifications to a subscriber, comprising the steps of:
(a) determining a remaining oil life by monitoring data at the vehicle;
(b) sending an oil life value from the vehicle to a central data system when the oil life falls below a first threshold;
(c) sending an electronic message to the subscriber using the oil life value obtained from the central data system;
(d) monitoring the oil life by iteratively repeating step (a); and
(e) repeating steps (b) and (c) only after the oil life has exceeded a second threshold that is greater than the first threshold; and
(f) periodically repeating the following two steps;
(f1) sending an oil life value from the vehicle to the central data system; and
(f2) sending an electronic message to the subscriber using the oil life value obtained from the central data system. - View Dependent Claims (27, 28, 29, 30)
1 Specification
This application claims the priority of U.S. Provisional Application No. 60/755,329, filed Dec. 31, 2005, the entire contents of which are hereby incorporated by reference.
This invention relates to techniques for wirelessly collecting vehicle information and providing that information to the vehicle owner or other authorized person.
Telematics units are now widely in use on vehicles to provide drivers with various types of wireless assistance services (WAS). For example, “roadside assistance” which historically involved a disabled vehicle and a physical visit to the vehicle by a serviceman, can now in many instances be provided remotely via wireless telecommunication with the vehicle through existing cellular network facilities. Thus, a telephone call to a call center (WAS center) can be used to electronically unlock doors where the keys have inadvertently been locked inside. Also, navigation and emergency assistance services can be obtained by voice communication with an advisor at the call center. Monitoring of vehicle operating conditions by the call center is also possible via the telematics device. For example, an air bag deployment event can be automatically reported to the call center where it triggers a return call to the vehicle from a live advisor to determine if emergency services are needed. Other vehicle data such as diagnostic trouble codes (DTCs) can similarly be reported to the call center.
In accordance with one aspect of the invention, there is provided a method of providing vehicle information to an owner or other recipient, comprising the steps of:
establishing one or more triggers;
monitoring for the occurrence of a trigger and, in response to determining that the trigger has occurred:
- providing vehicle data concerning one or more vehicle conditions to an electronic message generating system;
- constructing a notification message that includes information concerning the one or more vehicle conditions; and
- sending the notification message to the recipient via an electronic messaging system.
This method can be used to provide diagnostic and other useful vehicle information into an email message that is sent to a subscriber over a global computer network such as the Internet. Preferably, various different triggers can be used such as, for example, a time-based trigger that generates periodic (e.g., monthly) emails to the subscriber, as well as a maintenance trigger (e.g., oil life or mileage) that can be used to inform the subscriber when vehicle servicing is needed.
In accordance with another aspect of the invention, there is disclosed a method of providing vehicle information to an owner or other recipient, comprising the steps of:
automatically providing dynamic vehicle data to a central data system by executing one or more vehicle software-controlled processes at the vehicle that carry out the steps of:
- providing dynamic vehicle data to a telematics unit in the vehicle; and
- sending the dynamic vehicle data from the telematics unit to the central data system using a cellular communications system; and
automatically generating and sending an email message utilizing at least some of the dynamic vehicle data by executing one or more centralized software-controlled processes that carry out the steps of:
- incorporating received dynamic vehicle data into an email message along with static vehicle data and one or more predetermined textual messages; and
- sending the email out over a global public computer network using an electronic messaging system.
Using this method, dynamic vehicle data such as mileage, oil life, vehicle safety system status, etc. can be obtained from the vehicle and supplied to the subscriber by email or otherwise in a manner that is fully automated and requires no human intervention.
Preferred exemplary embodiments of the invention will hereinafter be described in conjunction with the appended drawings, wherein like designations denote like elements, and wherein:
The following terms used herein have the ascribed meanings. “Vehicle data” means information concerning a particular vehicle'"'"'s condition or operation; for example, mileage, remaining oil life, GPS coordinates, door lock state, diagnostic trouble codes (DTCs), diagnostic results, air bag activation. “Vehicle information” is information related to a particular vehicle; for example, vehicle data, maintenance information, recall information, wireless assistance services (WAS) account information, satellite radio account information. A “subscriber” is a person or entity who either has legal title to the vehicle (e.g., a purchaser, corporation, parent) or has possession of the vehicle for regular use (e.g., a lessee, employee driving a company car, licensed minor), or both (e.g., a purchaser-driver), and who has opted to receive electronic messages from the email notification system. “Owner” is used interchangeably with “subscriber” and has the same meaning, except that an owner need not necessarily be one that receives electronic messages from the email notification system. A “trigger” is a defined event or vehicle condition that, when met, initiates notification processing (e.g., every 30 days, remaining oil life <20%, mileage passes over 25,000 miles, ABS DTC received). “Notification processing” is the process of determining whether an electronic message should be sent to a subscriber and, if so, the content of the message. “Language characters” are the individual components of a written language (e.g., alphanumeric characters), whether represented graphically using a graphics file format or represented textually or as characters using, for example, ASCII or some other type of numerical encoding. A “diagnostic result” is specific or general information concerning a monitored vehicle component, system, or operating condition. A specific diagnostic result could be, for example, the amount of oil life remaining (e.g., on a percentage basis 0-100%), whereas a general diagnostic result could be, for example, a graphical indicator such as a green, yellow, or red graphic that indicates whether some action is required to address one or more of the vehicle conditions and possibly the importance or severity of the vehicle condition. An “electronic message generating system” (EMGS) is an electronic system that builds and sends electronic messages such as Internet email messages. An “electronic messaging system” is a public or private email system, or any other system suitable for transmitting electronic messages to specific recipients, including text messaging using SMS (short messaging services) and including MMS (multimedia messaging services).
The illustrated embodiment is directed to a vehicle email notification system and method in which triggers are used to initiate the generation and transmission of email messages that provide diverse types of dynamic vehicle information to the subscriber. The email notifications are triggered by different events, some of which are independent of the vehicle (e.g., a 30 day trigger to provide the subscriber with a monthly vehicle status report), and others of which occur at the vehicle, such as a mileage or low oil life trigger. Upon occurrence of a trigger, the notification system builds and sends to the subscriber an email message that contains the dynamic vehicle information and identifies any detected vehicle condition for which action is required or desired. The vehicle information generally falls into four categories: (1) diagnostic information; (2) maintenance information; (3) recall information, and (4) ancillary services information, such as account information for such things as wireless assistance services or satellite radio services. The email notification messages also provide supplemental information such as dealer contact information, regional specific information (such as a particular state'"'"'s child car seat laws or front passenger seat belt laws), maintenance service pricing quotes and/or coupons, state licensing renewal date and/or notification, and lease financing information (e.g., next monthly payment due date and amount). These and other features will be discussed below in greater detail.
As shown in
The vehicle communicates with a vehicle data upload (VDU) 160 system that lies at the operational heart of the notification system 100. In general, the VDU 160 handles initial configuration of each subscriber'"'"'s notification account upon enrollment, the setting and processing of triggers, the acquisition of data needed for populating the email notification message, and the initiation of actual email generation. These functions are implemented utilizing information obtained from a variety of databases and other systems including, in particular, a VDU administration tool (VAT) 182, an electronic message generating system (EMGS) 184, an email hosting facility 186, a wireless assistance services (WAS) center 170 as well as a user-configurable WAS website 188, and several other systems that supply information to the WAS center 170. As shown in
The VDU administration tool (VAT) 182 is used to set up the VDU 160 and EMGS 184 by providing the basic content of the email messages along with various configuration items for the generation and sending of the messages. For example, the VAT 182 can provide various configurable parameters such as the type of email (plain text, html, SMS), the number and timing of email resends when a failed send is detected, and the conditions under which an alternate email address is used. The VAT is also used to specify various aspects of the VDU-to-vehicle communication, such as the conditions under which a call is placed by the vehicle back to the VDU (e.g., vehicle ignition ON only, OFF only, or DON'"'"'T CARE) or the grace period (e.g., 60 days) that the subscriber is given following the end of their WAS subscription period before the vehicle-to-VDU communication capability is switched off.
The email notification messages generated by the system include both static content (predetermined text and possibly graphics) as well as dynamic content (information that normally changes over time). This static and dynamic content is accessed from different sources shown in
The electronic message generating system (EMGS) 184 is initiated by the VDU 160 as the result of a vehicle trigger received by the VDU. It obtains the dynamic and static vehicle information from the VDU 160 and in some cases directly from other sources and builds the email message using the predefined template that has been specified by the VAT 182. Once the email is built, it is sent via the Internet by way of the email hosting facility 186 which actually handles the queuing and transmission of the email using standard Internet mail protocols such as smtp.
Some of the vehicle or subscriber-specific static information used in the email message (subscriber name, dealer information, WAS account number, etc.) is obtained from the WAS database 174 which includes information originally obtained from yet other systems. For example, basic customer (subscriber) information can be maintained by a third party service 196 that provides a single source of cleansed customer data along with subscription and renewal information for their WAS account. Customer information from the CRM system 192 can also be used included in the WAS database 174. Subscriber-provided information inputted into a subscriber'"'"'s website 190 (e.g., the mileage at the last oil change) can also be provided to the WAS database 174. This information can be used by the WAS center 170 to assist a live advisor in handling customer inquiries and addressing vehicle problems monitored by the WAS center. For the generation of the email notifications, at least some of this information is pulled from the WAS database 174 by the VDU 160 and provided to the EMGS 184 for inclusion in the email message. Personalized information previously supplied by the subscriber to a user-customizable WAS website 188 (MyWAS) can also be accessed automatically by EMGS 184 and included into the email. An example would be a user-supplied digital photograph of their vehicle which could be included in the email.
The subscriber can also customize certain aspects of the system, such as the number of days used for the periodic triggers that generate status email notifications. Thus, rather than having a 30 day trigger, the subscriber can customize the trigger to occur perhaps once per week or once per quarter. This can be done via the subscriber website 190 which provides limited access to the VAT 182 to configure these items in the VDU 160.
Vehicle diagnostic and other information obtained from the vehicle by the VDU 160 can also be provided to the WAS database 174 for later retrieval by a live advisor or for other purposes. Also, at least some of this information can be supplied to the quality information system 194 for warranty analysis, trending and other evaluations. The provision of such information to the quality information system 194 can be automatic on every trigger, only for certain triggers, or only under certain conditions. For example, the mileage and oil life reading can be provided to the system 194 only in those instances where there is a DTC or particular DTC that has occurred.
Before turning to the specifics of the email notification message itself, reference is made to
In facilitating interactions among the various communication and electronic modules, vehicle communication network 112 uses any suitable network communication approaches, such as controller-area network (CAN), ISO Standard 9141, ISO Standard 11898 for high-speed applications, ISO Standard 11519 for lower speed applications, SAE Standard J1850 for high-speed and lower speed applications, and/or the like.
Telematics unit 120 can be implemented in various ways, but in the illustrated embodiment includes a processor 121, a wireless communications module 122 for communication to and from the vehicle via one or more antennas 123, a digital memory 124 which stores programs 125 and a database 126, one or more pushbutton switches 127 and a microphone 128 and one or more speakers 129 for enabling voice communication with the WAS live advisor and for use in hands free calling (HFC). Processor 121 can be implemented in various ways known to those skilled in the art, such as by a microprocessor or an application specific integrated circuit (ASIC). Processor 121 executes one or more computer programs 125 to carry out its various functions of monitoring and processing data and communicating with the vehicle system modules 130, vehicle user, and remote locations. As a part of the email notification system 100, it is also used to set the various triggers requested by the VDU 160 and monitor for the occurrence of a trigger and then initiate a call back to the VDU when the trigger occurrence is detected. Alternatively, a dedicated VSM 130 could be provided for trigger handling.
Communications module 122 provides wireless communication via cellular (e.g., CDMA, GSM), satellite, or other wireless path, and includes the ability to provide for both voice and data communications. This allows data communication with at least the VDU 160, as well as voice and, if desired, data communication with the WAS center 170 and dealer 180.
Memory 124 can any digital storage device that provides computer-readable storage of data and programs for use by processor 121. This includes volatile and/or non-volatile memory storage and can be implemented as one or more separate physical devices.
Programs 125 include one or more computer programs that are executed by processor 121 to carry out the various functions of telematics unit 120. The database 126 includes storage of the triggers set by the VDU 160 as well as associated information such as a listing of the vehicle systems to be accessed for purposes of acquiring and reporting dynamic vehicle information back to the VDU.
Although depicted in
Wireless carrier system 140 can be a cellular and/or satellite wireless communication system used to transmit voice and data between the vehicle 110 and various remote locations such as shown in
VDU 160 is a central data system that can be implemented using one or more computer systems located either at an independent remote location or, for example, at the WAS center 170. A typical computer system is shown in
WAS center 170 can be one or more locations staffed by one or more live advisors 176 who handle calls from vehicle drivers and/or who monitor for various vehicle conditions such as an airbag deployment. The WAS center can include one or more servers 172 that include the necessary communication capabilities with network 150, data storage 174, and a LAN 178 for connecting these components together along with the computer(s) used by the live advisors 176. If desired, the VDU 160 can be integrated into WAS center 170 rather than utilizing two separate systems. Suitable call center facilities are known and currently in use to provide remote live assistance in connection with in-vehicle safety and security systems. Apart from using live advisors, the advisor 176 can be implemented as an automaton or a program running on a computer operatively disposed to respond to subscriber requests.
Dealer service center 180 is a vehicle dealership where vehicle maintenance and repair is carried out. The dealer service center is connected by way of communication network 150 with the vehicle 110 so that the driver can initiate a telephone call with a technician or service scheduler at the dealership.
Turning now to
The first, upper region contains an introductory message such as shown. This message is built using an email template that is particular to the type of trigger that initiated the email. For example, the illustrated email message of
The welcome message text of this first region also identifies three action indicators: green (no issues found), yellow (action suggested), and red (immediate attention required). These action indicators are represented by symbols as shown, and these symbols and their short textual description are preferably included in each email. At the right side of the first region, a digital photograph of the make and model (and preferably style and color) of the subscriber'"'"'s vehicle is provided. This picture can either be accessed from a standard library of vehicle pictures, or can be a user-supplied photograph of his or her own vehicle obtained, for example, from the personalized WAS website. Underneath the pictured vehicle is the particular VIN number for the vehicle so that the email provides a convenient source of this information when needed by the subscriber.
The second through fourth regions of the email message are each separated into a number of sections, with each section relating to a particular type of information useful to the subscriber. For the diagnostic region, in the example provided in
The maintenance region of the email message includes a first section that provides information concerning the remaining engine oil life and a second section that provides vehicle mileage information. The colored action indicators are used here as well to identify whether any action is needed by the owner.
Where some servicing is required, either for maintenance or to address diagnostic issues, the email message can include a link to a dealer to schedule the vehicle service, or can provide pricing or coupon information to encourage the subscriber to obtain the necessary service either from a particular dealer or any local dealer. For example, where an oil change is needed, the email message can include a notice stating that the subscriber can print out the email message and take it with them to the dealer to obtain a discounted price or additional services when having the engine oil changed. Alternatively, the email message can provide a link that the subscriber can click to access a dealer coupon, and this coupon can either provide a general discount that is unrelated to the specific vehicle service needed or can be specifically tailored to the servicing required (for example, by offering additional related services or by providing specific pricing or discounts for the service needed).
The notification region is separated into four sections: vehicle recalls, WAS account and subscription information, hands free calling (HFC) account information, and satellite radio account and subscription information. The recall section lists each recall in effect and can provide additional detail concerning the purpose and scope of the recall. Only recalls applicable to the particular vehicle involved are reported. The WAS subscription section identifies the subscriber'"'"'s account number, type of service plan, and expiration date, and can include additional information if desired. The hands free calling section provides information on cellular voice telephone services that are available through the same wireless communication module 122 that is used to provide the WAS services. This section identifies the vehicle telephone number along with account information. For prepaid plans or monthly plans that offer a fixed number of included minutes, the number of remaining minutes is provided. The satellite radio account section provides account and subscription information for satellite radio services. As shown for the WAS subscription section, any of these renewable services can include a button in their individual section to redirect the subscriber to a subscription renewal website, and these buttons can be provided only once the renewal date approaches (e.g., within 120 days of the renewal date). Also, each of the ancillary services sections preferably include the ability for the user to click through to the service website itself to obtain additional account information, etc. Other sections can be shown in this notification region. For example, where the vehicle'"'"'s registration is near expiration (e.g., within 60 days), if this information is included in one of the databases accessible to the VDU or EMGS, then a state registration renewal notification with contact information and hypertext links can be provided in the email.
The fifth region can be used for miscellaneous information such as the dealer contact shown. This can include a link to the dealer website and/or selection of a “mailto:” or similar link that initiates an email message to the dealer. Some or all of the vehicle information (VIN, mileage, diagnostic results, etc.) can be automatically included in this dealer email by suitable programming or scripting known to those skilled in the art. Alternatively, the entire subscriber'"'"'s notification email can be included in or attached (e.g., forwarded) as a part of this dealer email. Apart from dealer information, insurance information and lease or loan information can be included in this fifth region as well, or can be included in another dedicated or shared region of the email. These other sections can include information for the subscriber such as insurance contact information or loan balance and payment due date information, as well as the ability to direct an email to the insurer or loan company.
As mentioned above in connection with the various vehicle systems that provide vehicle information and wireless communication, each of the ancillary service systems that provide, for example, the WAS, HFC, and satellite radio services, are existing systems and the construction and operation of these systems are known to those skilled in the art. Similarly the interconnections and programming necessary to interface with these systems and extract the desired accounting and subscription information are also known to those skilled in the art.
In some instances, there will be no information to be placed in a particular region or section of a region. For example, when there are no recalls in effect for the vehicle, or once the vehicle has had the recall servicing performed, the recall section will be empty. If desired, this can be implemented by a short message placed in the section such as “No recalls in effect.” Alternatively, it may be desirable to eliminate the section altogether, in which case the email template will include a provision for collapsing the section out of existence if there is no data to display. This can be done for other regions; for example, where the vehicle does not have an ABS system, or as another example, if the notification system is designed to allow subscribers to customize their email reports, one subscriber might wish to display powertrain systems diagnostic information whereas another might not. Rather than providing separate templates for each such potential combination of notifications, the email template can be setup to collapse the undesired sections of the diagnostic region for those users who do not want to see that powertrain information. This subscriber customization could be implemented via the VAT 182 through the subscriber website 190, and the configuration for that subscriber can be stored in the VDU database 164. Preferably, the sections are collapsed only when it is desired not to display the related information (e.g., no recalls in effect, or subscriber does not want powertrain information included). Where there is no data available for a section that is to be displayed (e.g., the diagnostic test failed and no data has been reported), then rather than collapsing the section, a diagnostic failed message is displayed, as discussed further above. This same approach can be used for the other regions so that, for example, where no satellite radio account information is available because that third party system is offline, then that fact would be noted rather than collapsing the satellite radio section out of existence.
Referring now to
In this embodiment, all triggers are set in the vehicle and all monitoring for the occurrence of a trigger happens at the vehicle. However, it will be appreciated by those skilled in the art that at least some of the triggers can be monitored at the VDU end and then a call placed to the vehicle to obtain the desired diagnostic and other information.
When enrolling via a web interface, such as the subscriber center 190, the system authenticates the subscriber via the identification provided by the user login (512) and from there the relevant vehicle and subscriber data is accessed and displayed for the subscriber (514). The subscriber can then complete the enrollment process following which the initial trigger is set in the vehicle that ultimately results in the welcome email and subsequent email notifications (504, 506).
Portions of the enrollment process can be automated and
The subscriber can also enroll by pressing the pushbutton 127 in the vehicle (624) and connecting to the live advisor 176 at the WAS center (626). The live advisor accesses the system data to determine whether the customer account already exists and whether the station ID (STID) of the vehicle'"'"'s wireless communication module 122 is already entered into the system (628). If not, the customer account can be manually setup (606) by the live advisor 176 and the initial connection attempt to the vehicle is carried out in the manner discussed above. If the account and STID are already setup in the system, then the process proceeds to setup the VDU configuration (616), set the vehicle triggers (618), and complete the carrier provisioning (620).
In the event that no CDR is created and supplied by the dealer at the time of vehicle delivery, and if the customer does not initiate enrollment and setting up of their account, the 400 mile trigger set in the vehicle by the manufacturer will initiate a call to the WAS center 170 when the vehicle odometer has reached 400 miles (630). As with the live advisor enrollment process, the WAS center 170 checks to determine whether a customer account already exists and whether the station ID (STID) of the vehicle'"'"'s wireless communication module 122 is already entered into the system (628). The remaining enrollment and setup process is then the same as discussed above in the case of enrollment using the live advisor.
As will be appreciated from
Other aspects that might be unique to fleet management can be included in the notification system 100. For example, for fleet vehicles equipped with GPS units, the location of the vehicle can be included in the data provided from the vehicle following a trigger, and this data can be included in the email notification showing where the vehicle is located either in coordinates or by mapping the location and including the map graphically in the email. Triggers can then also be defined that are based on location so that an email notification is generated and sent when the vehicle arrives at a particular location or moves outside of a defined geographic region. The email notification messages can be sent to the driver and fleet manager, or to only one of these. Furthermore, messages from the fleet managers to the drivers can be combined into the email notification messages so that, for example, the manager can generate a message to the drivers which causes the VDU to send an immediate callback trigger to each of the vehicles. Once a vehicle then calls back, the email notification message to the driver is generated and the manager'"'"'s message is included in the email.
As discussed above, once enrollment and VDU configuration is complete in a typical individual subscriber scenario, an initial 24 hour trigger is set in the vehicle by a call from the VDU 160 to the vehicle 110. Once this trigger goes off in the vehicle, it calls back to the VDU 160 under the appropriate conditions (e.g., vehicle ignition ON) and provides the various vehicle information (mileage, oil life, diagnostic status of vehicle systems, WAS and other account information, etc.) which is then included in the welcome email that is built by the EMGS 184 and sent to the subscriber. The VDU then sets one or more additional triggers, preferably during this same call from the vehicle. These triggers include, for example, a monthly trigger to give the subscriber a complete vehicle and account status update once a month, as well as an oil life trigger to warn the subscriber when the remaining oil life is below a predefined amount (e.g., less than 20% oil life remaining). The oil life trigger can be set to go off when the oil life is below this threshold or within a range of values (e.g., 19.6% to 20%), but this can result in multiple triggers (repeat calls from the vehicle) each time it checks the oil life value. These repeat triggers can be used to send multiple messages to the subscriber or, if that is not desired, the repetitive triggers can be ignored by the VDU so only one email message is sent to the subscriber. Alternatively, the oil life trigger can be setup to go off when the oil life equals a predetermined amount (e.g., trigger goes off when oil life is at 20%, but not when it is above or below this amount), and this latter approach can be used to avoid getting repeat calls from the vehicle. Multiple oil life trigger points can be set if desired. The construction and operation of vehicle systems that monitor and determine remaining oil life are known to those skilled in the art.
Some triggers can be persistent triggers that are not cleared when they go off. For example, a monthly trigger set in the vehicle to go off on the 15th of each month need not be cleared, but can be left set as long as monthly triggers are desired. Such a trigger can be set to go off at a certain time of day so that it only occurs once on the appointed day of the month. Alternatively, some or all of the triggers can be cleared automatically or by request of the VDU each time they go off. This provides flexibility in handling different types of triggers. For example, with an oil life trigger, it can be cleared once it goes off, and can remain cleared with no new oil life trigger set until the oil is changed and the oil life goes back up to a reset point, either above the threshold trigger level (e.g., 20%) or to some higher reset limit (e.g., above 80%, or back to 100%). Once it is determined that the oil life is back to (or above) the reset point, the oil life trigger is reset which can be done, for example, by a new oil life trigger being provided by the VDU. Where the vehicle also uses monthly or other time-based triggers, these triggers can continue to be processed and used to report oil life regardless of whether the remaining oil life is above or below the threshold value. Thus, for example, oil life notifications can be sent to the subscriber using the following process:
(a) determining a remaining oil life by monitoring data at the vehicle;
(b) sending an oil life value from the vehicle to a central data system when the oil life falls below a first threshold;
(c) sending an electronic message to the subscriber using the oil life value obtained from the central data system;
(d) monitoring the oil life by iteratively repeating step (a); and
(e) repeating steps (b) and (c) only after the oil life has exceeded a second threshold that is greater than the first threshold; and
(f) periodically repeating the following two steps:
- (f1) sending an oil life value from the vehicle to the central data system; and
- (f2) sending an electronic message to the subscriber using the oil life value obtained from the central data system.
The time-based (periodic) emails of step (f) can be carried out and processed independently of the oil life threshold approach of step (b). By using this method, the system avoids sending multiple emails due to low oil life yet continues to send the periodic (e.g., monthly) email reports. Once the oil life returns to the reset point (i.e., above the second threshold), then another low oil life email will be sent once that point is reached. Determination of the resetting of the oil life above the reset point can be done in any suitable manner, including by monitoring a calculated oil life and comparing it to the second threshold, or by detecting that the oil has been changed such as by a system reset carried out at the service station or dealer at the time of vehicle servicing. This process can be implemented by the use of triggers as discussed above, and the monitoring of oil life and resetting of the oil life trigger can be done at the back end (VDU) or can occur automatically at the vehicle so that no new call to the vehicle is needed to reset the oil life trigger.
When vehicle data is to be transmitted to the VDU as the result of a trigger, this data is preferably sent by the vehicle during the triggered call that is placed to the VDU by the vehicle. The desired vehicle data (diagnostic, mileage, etc.) can be pre-specified to the vehicle as a part of the initial setting of the trigger. For example, the vehicle can be configured at the factory or by subsequent programming to provide particular vehicle data in response to particular types of triggers. This can be done, for example, using a lookup table in memory where the particular type of trigger is used to determine the particular type of diagnostics to run and vehicle data to be returned. Then, when a trigger occurs, this data is automatically passed to the VDU during the call from the vehicle. Alternatively, the VDU can specify during a particular triggered call from the vehicle exactly what data it wants. In this scenario, the particular customizations of the email notification (e.g., include ABS system diagnostics, but not powertrain) can be used by the VDU to specify to the vehicle what data it wants so that the vehicle need only transmit the desired data.
Referring now to
There are a variety of trigger types that can be set in the vehicle, some of which are not used to generate email notifications. Thus, as shown in
Once a particular trigger is identified and processed in
In some cases, it may not be desirable to send the subscriber an email even though a desired trigger has gone off. This may be, for example, because it is not desirable to inundate the subscriber with too many emails from the system. Thus, the system can check the number of emails sent to the subscriber within the last 30 days (812) and, if that number is more than one (814), the system can simply ignore the trigger in the sense that no email is generated (816). If there has not been more than one email recently sent, then the system then instructs the EMGS to build and send the email (818). Failed sent message handling (820) can be built into the system as well, and a retry strategy can be used for this was well, such as resending the email or setting a retry trigger on the vehicle (822) so that, rather than simply resending the email a day or so later, the system can process a new trigger to get the most up-to-date information available from the vehicle. Failed attempts to send the email to the user can be logged and a notice placed on the subscriber center website 190 or MyWAS 188, or sent to the live advisor, or even sent to the vehicle and either noted to the driver via a voice message or displayed on a driver information center if the vehicle is so equipped.
A number of other features can be included in the email notification system. Sometimes, a trigger actually occurs at a time when it is not possible or desirable for the vehicle to call into the VDU. However, the trigger can be time-stamped by the vehicle so that, when the vehicle next calls the VDU, the exact time that the trigger occurred can be given to the VDU. This can also be used to set the system so that calls from the vehicle always occur at a certain time or event (e.g., at vehicle start-up). Apart from the subscriber receiving emails as the result of triggers, the system can allow the user to specifically request an email at any time. As discussed above, this can be by way of a button press of pushbutton 127 on the vehicle (either by requesting an email from a live advisor or by using a voice response unit). Alternatively, the subscriber can request this by sending an email to, for example, the EMGS or WAS. The email can be sent to an address of the form VIN@domain.tld, where the VIN is the vehicle identification number and domain.tld is the domain of the email handling facility. This email message can be used to instruct the VDU to automatically generate an immediate trigger that is sent to the vehicle, executed, and the results returned to the subscriber via the email notification message, so that the subscriber gets a quick vehicle status update. This can be useful, for example, to check the vehicle before leaving on vacation. Preferably, each of the emails sent to the subscriber are also provided to the WAS system so that they are accessible to the live advisor.
Apart from retry strategies that are used when a call is dropped, the VDU can also be programmed to monitor for anticipated triggers from each vehicle so that, for example, if a vehicle is supposed to be calling in on a monthly trigger, but does not, the VDU can call the vehicle to determine its availability and set a new trigger to obtain diagnostic data, etc.
It is to be understood that the foregoing description is of one or more preferred exemplary embodiments of the invention. The invention is not limited to the particular embodiment(s) disclosed herein, but rather is defined solely by the claims below. Furthermore, the statements contained in the foregoing description relate to particular embodiments and are not to be construed as limitations on the scope of the invention or on the definition of terms used in the claims, except where a term or phrase is expressly defined above. Various other embodiments and various changes and modifications to the disclosed embodiment(s) will become apparent to those skilled in the art. All such other embodiments, changes, and modifications are intended to come within the scope of the appended claims.
As used in this specification and claims, the terms “for example,” “for instance,” and “such as,” and the verbs “comprising,” “having,” “including,” and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that that the listing is not to be considered as excluding other, additional components or items. Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation.