×

Power Control and Status Circuitry for Communicating Power on Reset Control and Status Via a Single Electrode

  • US 20090044034A1
  • Filed: 08/08/2007
  • Published: 02/12/2009
  • Est. Priority Date: 08/08/2007
  • Status: Active Grant
First Claim
Patent Images

1. An apparatus including an integrated circuit having internal circuitry for providing, via a single output electrode, a status signal having time multiplexed states indicative of a power on reset condition for external circuitry following enablement of operations of portions of said internal circuitry, and further indicative of subsequent operation statuses of said internal circuitry portions, comprising:

  • shorter delay circuitry responsive to a plurality of ready signals having states indicative of stabilized and non-stabilized states of operations of corresponding portions of said internal circuitry by providing, in accordance with a plurality of shorter time delays, a plurality of corresponding delayed ready signals;

    longer delay circuitry responsive to said plurality of ready signals and a plurality of enable signals having states indicative of enabled and non-enabled states of operations of said corresponding portions of said internal circuitry by providing a plurality of corresponding logic signals indicative of said states of respective pairs of one of said plurality of enable signals and one of said plurality of ready signals, and, in accordance with a plurality of longer time delays, a plurality of corresponding delayed logic signals and a plurality of corresponding inverse delayed logic signals; and

    encoding circuitry coupled to said shorter delay circuitry and said longer delay circuitry, and responsive to said plurality of enable signals, said plurality of ready signals, said plurality of logic signals, said plurality of delayed logic signals, and said plurality of inverse delayed logic signals by providing a status signal having time multiplexed states which are indicative of a power on reset condition for external circuitry following one or more of said enabled states of operations of said corresponding portions of said internal circuitry, and are further indicative of one or more of said stabilized states of operations of said corresponding portions of said internal circuitry, whereinsaid status signal is in a de-asserted state when each of said plurality of enable signal states is indicative of said non-enabled states of operations of corresponding portions of said internal circuitry,said status signal transitions to and remains in an asserted state, during at least an interval substantially equal to one of said plurality of longer time delays, in response to a first one of said plurality of enable signal states becoming indicative of said enabled state of operation of a first corresponding portion of said internal circuitry, following which, in response to a first one of said plurality of ready signal states being indicative of said stabilized state of operation of said first corresponding portion of said internal circuitry, said status signal transitions to said de-asserted state,during said enabled and stabilized states of operation of said first corresponding portion of said internal circuitry and following a second one of said plurality of enable signal states becoming indicative of said enabled state of operation of a second corresponding portion of said internal circuitry, said status signal remains in said de-asserted state during at least an interval substantially equal to one of said plurality of shorter time delays, following which,in response to a second one of said plurality of ready signal states being indicative of said stabilized state of operation of said second corresponding portion of said internal circuitry, said status signal remains in said de-asserted state, andin response to said second one of said plurality of ready signal states being indicative of said non-stabilized state of operation of said second corresponding portion of said internal circuitry, said status signal transitions to said asserted state, andsaid status signal transitions to and remains in said asserted state in response to said first and second ones of said plurality of enable signal states concurrently becoming indicative of said enabled states of operations of said first and second corresponding portions of said internal circuitry, following which and after said first one of said plurality of ready signal states becomes and remains indicative of said stabilized state of operation of said first corresponding portion of said internal circuitry during at least an interval substantially equal to one of said plurality of longer time delays, said status signal transitions to said de-asserted state, further following which, in response to one of said first and second ready signal states becoming indicative of said non-stabilized state of operation of one of said first and second corresponding portions of said internal circuitry, said status signal transitions to said asserted state.

View all claims
  • 2 Assignments
Timeline View
Assignment View
    ×
    ×