×

BURNER APPARATUS

  • US 20090075223A1
  • Filed: 09/13/2007
  • Published: 03/19/2009
  • Est. Priority Date: 09/13/2007
  • Status: Active Grant
First Claim
Patent Images

1. A burner assembly for combining air and fuel to produce a flame, the burner assembly comprisinga fuel nozzle including a shell formed to include several fuel-discharge ports and a fuel-transport passageway arranged to communicate fuel to the fuel-discharge ports to cause a stream of fuel to be discharged from the fuel-transport passageway through each of the fuel-discharge ports andmixing means for mixing the streams of fuel discharged through the fuel-discharge ports formed in the fuel nozzle with combustion air extant in an air plenum associated with the fuel nozzle to produce an air-and-fuel mixture that can be ignited in a mixing chamber to produce a flame,wherein the mixing means includes an air-fuel mixing cone formed to include an inner end defining an upstream nozzle-receiver opening, an outer end defining a downstream combustion-discharge opening, and a funnel-shaped side wall extending between the inner and outer ends to define a mixing chamber therebetween, the fuel nozzle is arranged to communicate with the mixing chamber via the upstream nozzle-receiver opening to discharge streams of fuel into the mixing chamber, and the funnel-shaped side wall includes an unperforated outlet section terminating at the downstream combustion-discharge opening and defining an outer region of the mixing chamber and a perforated inlet section extending from the upstream nozzle-receiver opening to the unperforated outlet section and having an upstream territory located adjacent to the fuel nozzle and a downstream territory interposed between the upstream territory and the unperforated outlet section and arranged to cooperate with the upstream territory to define an inner region of the mixing chamber,wherein the perforated inlet section of the funnel-shaped side wall is formed to include air-admission port means for defining an air-admission portal exposed to pressurized air extant in the air plenum and configured to extend away from the upstream nozzle-receiver opening and to decrease in effective size along a length of the funnel-shaped side wall as distance from the upstream nozzle-receiver opening increases to cause a greater volume of pressurized air to pass through an upstream portion of the air-admission portal into the upstream territory of the inner region of the mixing chamber in close proximity to the fuel nozzle to mix with the streams of fuel discharged by the fuel nozzle to produce a combustible fuel-rich air-and-fuel mixture in the upstream territory and to cause a relatively smaller lesser volume of pressurized air to pass through a downstream portion of the air-admission portal into the downstream territory of the inner region of the mixing chamber to generate in the downstream territory a first-stage air-and-fuel mixture characterized by a low nitrogen oxide (NOx) content, a high hydrocarbon (HC) content, and a high carbon monoxide (CO) content so that a cold-temperature flame-quenching zone is established in the inner region of the mixing chamber and carbon monoxide, unburned hydrocarbon included in the first-stage air-and-fuel mixture flow from the inner region of the mixing chamber into the outer region of the mixing chamber formed in the unperforated outlet section, andwherein the unperforated outlet section of the funnel-shaped side wall is separated from the air plenum to block admission of pressurized air from the air plenum into the outer region of the mixing chamber to establish a high-temperature emission-reduction burnout zone in the outer region of the mixing chamber causing carbon monoxide and hydrocarbon admitted into the outer region to be burned therein to generate in the outer region of the mixing chamber a second-stage air-and-fuel mixture characterized by a low nitrogen oxide content, a low hydrocarbon content, and a low carbon monoxide content that is discharged from the outer region of the mixing chamber through the combustion-discharge opening formed in the outer end of the air-fuel mixing cone.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×