×

Axial Pullwire Tension Mechanism for Self-Expanding Stent

  • US 20090099640A1
  • Filed: 03/28/2007
  • Published: 04/16/2009
  • Est. Priority Date: 03/30/2006
  • Status: Abandoned Application
First Claim
Patent Images

1. An axial pull wire tension mechanism for self-expanding stent employed for radially tensioning the stent during an implantation of a self-expanding stent into the cardiac blood vessels, said self-expanding stent comprises a radially transformable tubular net structure, of which net fibers intertwine to form multiple transformable units, two ends of the stent comprises a plurality of open wire knees and sealed wire eyelets, said self-expanding stent can be implanted into the cardiac blood vessels after being radially compressed by a class of open-ended delivery system that comprises inner tubes, optional middle tubes, a proximal end controller, stayguys and lock wires, a further end of the inner tubes is conjunct with an inner tubing heads whereas an outer flank of its distal end is conjunct with sidelining texturing tubes, with the middle tube sliding along the outer layer of the inner tube, the proximal end controller is fixed at proximal ends of both the inner and middle tubes with guy ports at each end, the lock wire is set in the layer between the inner tube and the middle tube;

  • wherein said axial pull wire tension mechanism comprises the inner tubes, the middle tubes, the lock wires, the open wire knees and the sealed wire eyelets at the ends of the stent that together assemble a delivery system, and pull wires for tensioning the stent, said inner tubes at least have one proximal-sideline openings at the proximal end and at least one distal sideline and one proximal sideline openings at the distal end, said middle tube have one distal end opening and at least one optional distal sideline opening, said pull wire at least has one distal end pull wire at the conjunction with the distal end of the stent and one proximal end pull wire at the conjunction with the proximal end of the stent, with a pull wire ring at the distal end of each pull wire, with a pull wire ring at the distal end being threaded through and temporarily locked up by lock wires, pull wires pass through the tubing heads or the openings of the inner/middle tubes and travel between the open wire knees at the distal/proximal end of the stent, sealed wire eyelets at the ends of middle of the stent, and the transformable units in the middle to produce a temporary network that spawns the pull wire tension mechanism capable of radially tensioning the stent.

View all claims
  • 0 Assignments
Timeline View
Assignment View
    ×
    ×