×

Method for Thin Film Formation

  • US 20090202721A1
  • Filed: 03/14/2006
  • Published: 08/13/2009
  • Est. Priority Date: 03/15/2005
  • Status: Abandoned Application
First Claim
Patent Images

1. In the thin film formation apparatus that includes a vacuum vessel internally separated into two compartments by means of a conductive partition plate, one of the two compartments serving as a plasma generating space in which a high frequency electrode is disposed and the other serving as a film forming space in which a substrate holding mechanism is disposed for holding a silicon substrate firmly thereon, the conductive partition plate having a plurality of penetrating holes through which the plasma generating space and film forming space communicate with each other, and further including a first inner space separated from the plasma generating space and communicating with the film forming space through a plurality of material gas diffusion holes provided on the conductive partition plate and a second inner space separated from the first inner space and communicating with the film forming space through a plurality of gas diffusion holes provided on the conductive partition plate, a thin film formation method for forming a thin film on a silicon substrate, including introducing a gas into the plasma generating space for discharging plasma and generating a desired active species (radical) by the discharged plasma, introducing the desired active species generated in the plasma generating space into the film forming space through the plurality of penetrating holes on the conductive partition plate, introducing the material gas supplied from its external source into the first inner space through the plurality of material gas diffusion holes, and introducing any suitable gas other than the material gas supplied from the external source into the film forming space through the plurality of gas diffusion holes, thereby forming a silicon oxide film on the silicon substrate by allowing the active species and material gas introduced into the film forming space to react with each other, wherein any suitable gas other than the material gas introduced into the second inner space is a nitrogen atom-contained gas, and wherein said method further includes:

  • adjusting the flow rate of the nitrogen atom-contained gas being introduced into the second inner space during the formation of the silicon oxide film on the silicon substrate to at least the maximum value, at least, at the time of start of the formation of the silicon oxide film on the silicon substrate.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×