×

POWER SYSTEMS AND METHODS FOR HIGH OR MEDIUM INITIAL TEMPERATURE HEAT SOURCES IN MEDIUM AND SMALL SCALE POWER PLANTS

  • US 20100146973A1
  • Filed: 12/03/2009
  • Published: 06/17/2010
  • Est. Priority Date: 10/27/2008
  • Status: Active Grant
First Claim
Patent Images

1. A system for heat conversion comprising:

  • a turbine subsystem (TSS) including at least one turbine adapted to convert a portion of thermal energy contained in a fully vaporized and superheated rich working fluid stream to form a spent rich working fluid stream,a vaporizing and superheating subsystem (VSS) including a heat recovery vapor generator (HRVG) and at least one VSS heat exchange unit, where the HRVG is adapted to produce the fully vaporized and superheated rich working fluid stream using heat from an external heat source stream and the at least one VSS heat exchange unit is adapted to produce a heated richer working fluid stream and a heated lean or leaner working fluid stream using heat from the spent rich working fluid stream,a heat exchange and separation subsystem (HESS) including at least one HESS heat exchange unit, a separator and at least two HESS pumps, where the at least one HESS heat exchange unit is adapted to form a heated richer working fluid stream and a pre-heated higher pressure first leaner working fluid substream with heat from a condensing working fluid stream comprising a cooled spent working fluid stream and a higher pressure second leaner working fluid substream, where the separator is adapted to separate a cooled condensing working fluid stream into a rich vapor stream and a liquid leaner working fluid stream, where the liquid leaner working fluid stream is split into a first leaner working fluid substream, second leaner working fluid substream and third leaner working fluid substream and where the two HESS pumps are adapted to produce a higher pressure first leaner working fluid substream and the higher pressure second leaner working fluid stream, anda condensing subsystem (CSS) including two CSS heat exchange units and a CSS pump, where the CSS pump is adapted to produce a higher pressure fully condensed richer working fluid stream form a fully condensed richer working fluid stream, where one of the CSS heat exchange units is adapted to pre-heat the higher pressure fully condensed richer working fluid stream and partially condense a richer working fluid stream comprising the third leaner working fluid substream and the rich vapor stream, and where the other CSS heat exchange unit is adapted to fully condense the partially condensed richer working fluid stream using an external coolant stream to form the fully condensed richer working fluid stream, andwhere all of the streams are derived from a single multi-component fluid including at least one lower boiling point component and at least one higher boiling point component, where the rich vapor stream has a first fluid composition, where the richer working fluid streams having a second fluid composition, where the rich working fluid streams have a third fluid composition, where the condensing working fluid streams have a fourth fluid composition and where the leaner working fluid streams have a fifth fluid composition.

View all claims
  • 3 Assignments
Timeline View
Assignment View
    ×
    ×