WIRELESS ENERGY TRANSFER, INCLUDING INTERFERENCE ENHANCEMENT

0Associated
Cases 
0Associated
Defendants 
0Accused
Products 
202Forward
Citations 
0
Petitions 
2
Assignments
First Claim
1. An apparatus for use in wireless energy transfer, the apparatus comprising:
 a first resonator structure configured for energy transfer with a second resonator structure, over a distance D larger than a characteristic size L_{1 }of said first resonator structure and larger than a characteristic size L_{2 }of said second resonator structure,wherein the energy transfer has a rate κ and
is mediated by evanescenttail coupling of a resonant field of the first resonator structure and a resonant field of the second resonator structure, whereinsaid resonant field of the first resonator structure has a resonance angular frequency ω
_{1}, a resonance frequencywidth Γ
_{1}, and a resonance quality factor Q_{1}=ω
_{1}/2Γ
_{1}, andsaid resonant field of the second resonator structure has a resonance angular frequency ω
_{2}, a resonance frequencywidth Γ
_{2}, and a resonance quality factor Q_{2}=ω
_{2}/2Γ
_{2},wherein the absolute value of the difference of said angular frequencies ω
_{1 }and ω
_{2 }is smaller than the broader of said resonant widths Γ
_{1 }and Γ
_{2},and further comprising a power supply coupled to the first structure and configured to drive the first resonator structure or the second resonator structure at an angular frequency away from the resonance angular frequencies and shifted towards a frequency corresponding to an odd normal mode for the resonator structures to reduce radiation from the resonator structures by destructive farfield interference.
2 Assignments
0 Petitions
Accused Products
Abstract
Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured for energy transfer with a second resonator structure over a distance D larger than characteristic sizes, L_{1 }and L_{2}, of the first and second resonator structures. A power generator is coupled to the first structure and configured to drive the first resonator structure or the second resonator structure at an angular frequency away from the resonance angular frequencies and shifted towards a frequency corresponding to an odd normal mode for the resonator structures to reduce radiation from the resonator structures by destructive farfield interference.
206 Citations
WIRELESS ENERGY TRANSFER WITH HIGHQ CAPACITIVELY LOADED CONDUCTING LOOPS  
Patent #
US 20110043046A1
Filed 12/23/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER  
Patent #
US 20110074347A1
Filed 11/18/2010

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER  
Patent #
US 20110074218A1
Filed 11/18/2010

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER  
Patent #
US 20110089895A1
Filed 11/18/2010

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER  
Patent #
US 20110193419A1
Filed 02/28/2011

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

CONTACTLESS POWER SUPPLY SYSTEM AND CONTROL METHOD THEREOF  
Patent #
US 20110270462A1
Filed 10/30/2009

Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha

Sponsoring Entity
Ibaraki Toyota Jidosha Kabushiki Kaisha

EFFICIENT NEARFIELD WIRELESS ENERGY TRANSFER USING ADIABATIC SYSTEM VARIATIONS  
Patent #
US 20100148589A1
Filed 10/01/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER OVER DISTANCES TO A MOVING DEVICE  
Patent #
US 20100187911A1
Filed 12/30/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER OVER A DISTANCE WITH DEVICES AT VARIABLE DISTANCES  
Patent #
US 20100207458A1
Filed 12/16/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER WITH HIGHQ TO MORE THAN ONE DEVICE  
Patent #
US 20100127575A1
Filed 12/16/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER WITH HIGHQ SUBWAVELENGTH RESONATORS  
Patent #
US 20100123355A1
Filed 12/16/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER WITH HIGHQ AT HIGH EFFICIENCY  
Patent #
US 20100127574A1
Filed 12/16/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER WITH HIGHQ DEVICES AT VARIABLE DISTANCES  
Patent #
US 20100123354A1
Filed 12/16/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER ACROSS VARIABLE DISTANCES  
Patent #
US 20100102641A1
Filed 12/30/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER WITH HIGHQ SIMILAR RESONANT FREQUENCY RESONATORS  
Patent #
US 20100096934A1
Filed 12/23/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER TO A MOVING DEVICE BETWEEN HIGHQ RESONATORS  
Patent #
US 20100102640A1
Filed 12/30/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER OVER A DISTANCE AT HIGH EFFICIENCY  
Patent #
US 20100127573A1
Filed 12/16/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER WITH HIGHQ FROM MORE THAN ONE SOURCE  
Patent #
US 20100123353A1
Filed 12/16/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER ACROSS VARIABLE DISTANCES WITH HIGHQ CAPACITIVELYLOADED CONDUCTINGWIRE LOOPS  
Patent #
US 20100133919A1
Filed 12/30/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

WIRELESS ENERGY TRANSFER OVER VARIABLE DISTANCES BETWEEN RESONATORS OF SUBSTANTIALLY SIMILAR RESONANT FREQUENCIES  
Patent #
US 20100133918A1
Filed 12/30/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy transfer using field shaping to reduce loss  
Patent #
US 8,304,935 B2
Filed 12/28/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer using magnetic materials to shape field and reduce loss  
Patent #
US 8,324,759 B2
Filed 12/28/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Efficient nearfield wireless energy transfer using adiabatic system variations  
Patent #
US 8,362,651 B2
Filed 10/01/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy transfer over a distance at high efficiency  
Patent #
US 8,395,283 B2
Filed 12/16/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless nonradiative energy transfer  
Patent #
US 8,395,282 B2
Filed 03/31/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy transfer for computer peripheral applications  
Patent #
US 8,400,017 B2
Filed 11/05/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer with highQ similar resonant frequency resonators  
Patent #
US 8,400,022 B2
Filed 12/23/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy transfer with highQ subwavelength resonators  
Patent #
US 8,400,021 B2
Filed 12/16/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy transfer with highQ devices at variable distances  
Patent #
US 8,400,020 B2
Filed 12/16/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy transfer with highQ at high efficiency  
Patent #
US 8,400,018 B2
Filed 12/16/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy transfer with highQ from more than one source  
Patent #
US 8,400,019 B2
Filed 12/16/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy transfer with highQ capacitively loaded conducting loops  
Patent #
US 8,400,023 B2
Filed 12/23/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy transfer across variable distances  
Patent #
US 8,400,024 B2
Filed 12/30/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Low AC resistance conductor designs  
Patent #
US 8,410,636 B2
Filed 12/16/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Multiresonator wireless energy transfer for exterior lighting  
Patent #
US 8,441,154 B2
Filed 10/28/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer using conducting surfaces to shape field and improve K  
Patent #
US 8,461,722 B2
Filed 12/29/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer systems  
Patent #
US 8,461,719 B2
Filed 09/25/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer using conducting surfaces to shape fields and reduce loss  
Patent #
US 8,461,720 B2
Filed 12/28/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer using object positioning for low loss  
Patent #
US 8,461,721 B2
Filed 12/29/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Tunable wireless energy transfer for outdoor lighting applications  
Patent #
US 8,466,583 B2
Filed 11/07/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer over distance using field shaping to improve the coupling factor  
Patent #
US 8,471,410 B2
Filed 12/30/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer with highQ resonators using field shaping to improve K  
Patent #
US 8,476,788 B2
Filed 12/29/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer using variable size resonators and system monitoring  
Patent #
US 8,482,158 B2
Filed 12/28/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer resonator kit  
Patent #
US 8,487,480 B1
Filed 12/16/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer converters  
Patent #
US 8,497,601 B2
Filed 04/26/2010

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer with feedback control for lighting applications  
Patent #
US 8,552,592 B2
Filed 02/02/2010

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer using object positioning for improved k  
Patent #
US 8,569,914 B2
Filed 12/29/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer using high Q resonators for lighting applications  
Patent #
US 8,587,153 B2
Filed 12/14/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer using repeater resonators  
Patent #
US 8,587,155 B2
Filed 03/10/2010

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Resonator arrays for wireless energy transfer  
Patent #
US 8,598,743 B2
Filed 05/28/2010

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer systems  
Patent #
US 8,629,578 B2
Filed 02/21/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Tunable wireless energy transfer systems  
Patent #
US 8,643,326 B2
Filed 01/06/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer modeling tool  
Patent #
US 8,667,452 B2
Filed 11/05/2012

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor  
Patent #
US 8,669,676 B2
Filed 12/30/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer for supplying power and heat to a device  
Patent #
US 8,686,598 B2
Filed 12/31/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Temperature compensation in a wireless transfer system  
Patent #
US 8,692,412 B2
Filed 03/30/2010

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer with frequency hopping  
Patent #
US 8,692,410 B2
Filed 12/31/2009

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer systems  
Patent #
US 8,618,696 B2
Filed 02/21/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Low AC resistance conductor designs  
Patent #
US 8,716,903 B2
Filed 03/29/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer resonator enclosures  
Patent #
US 8,723,366 B2
Filed 03/10/2010

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer using repeater resonators  
Patent #
US 8,729,737 B2
Filed 02/08/2012

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer over variable distances between resonators of substantially similar resonant frequencies  
Patent #
US 8,760,008 B2
Filed 12/30/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy transfer with highQ to more than one device  
Patent #
US 8,760,007 B2
Filed 12/16/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy transfer over distances to a moving device  
Patent #
US 8,766,485 B2
Filed 12/30/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Integrated resonatorshield structures  
Patent #
US 8,772,973 B2
Filed 08/20/2010

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer across a distance to a moving device  
Patent #
US 8,772,972 B2
Filed 12/30/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy transfer across variable distances with highQ capacitivelyloaded conductingwire loops  
Patent #
US 8,772,971 B2
Filed 12/30/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy transfer to a moving device between highQ resonators  
Patent #
US 8,791,599 B2
Filed 12/30/2009

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Power generation for implantable devices  
Patent #
US 8,805,530 B2
Filed 06/02/2008

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Efficient nearfield wireless energy transfer using adiabatic system variations  
Patent #
US 8,836,172 B2
Filed 11/15/2012

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy transfer for implantable devices  
Patent #
US 8,847,548 B2
Filed 08/07/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer modeling tool  
Patent #
US 8,875,086 B2
Filed 12/31/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer with variable size resonators for implanted medical devices  
Patent #
US 8,901,778 B2
Filed 10/21/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer with resonator arrays for medical applications  
Patent #
US 8,901,779 B2
Filed 10/21/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer with variable size resonators for medical applications  
Patent #
US 8,907,531 B2
Filed 10/21/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Secure wireless energy transfer for vehicle applications  
Patent #
US 8,912,687 B2
Filed 11/03/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer with multi resonator arrays for vehicle applications  
Patent #
US 8,922,066 B2
Filed 10/17/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Integrated repeaters for cell phone applications  
Patent #
US 8,928,276 B2
Filed 03/23/2012

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer for vehicles  
Patent #
US 8,933,594 B2
Filed 10/18/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer for medical applications  
Patent #
US 8,937,408 B2
Filed 04/20/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer resonator thermal management  
Patent #
US 8,947,186 B2
Filed 02/07/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Safety systems for wireless energy transfer in vehicle applications  
Patent #
US 8,946,938 B2
Filed 10/18/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Tunable wireless energy transfer for invehicle applications  
Patent #
US 8,957,549 B2
Filed 11/03/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Position insensitive wireless charging  
Patent #
US 8,963,488 B2
Filed 10/06/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer for photovoltaic panels  
Patent #
US 9,035,499 B2
Filed 10/19/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless nonradiative energy transfer  
Patent #
US 9,065,286 B2
Filed 06/12/2014

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy distribution system  
Patent #
US 9,065,423 B2
Filed 09/14/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Flexible resonator attachment  
Patent #
US 9,093,853 B2
Filed 01/30/2012

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless power harvesting and transmission with heterogeneous signals  
Patent #
US 9,095,729 B2
Filed 01/20/2012

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless power harvesting and transmission with heterogeneous signals  
Patent #
US 9,101,777 B2
Filed 08/29/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Resonator enclosure  
Patent #
US 9,105,959 B2
Filed 09/04/2012

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Secure wireless energy transfer in medical applications  
Patent #
US 9,106,203 B2
Filed 11/07/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless powered television  
Patent #
US 9,160,203 B2
Filed 10/06/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Controlling the wireless transmission of power based on the efficiency of power transmissions  
Patent #
US 9,172,251 B2
Filed 10/30/2009

Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha

Sponsoring Entity
Ibaraki Toyota Jidosha Kabushiki Kaisha

Wireless energy transfer in lossy environments  
Patent #
US 9,184,595 B2
Filed 02/13/2010

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Resonator optimizations for wireless energy transfer  
Patent #
US 9,246,336 B2
Filed 06/22/2012

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Resonator fine tuning  
Patent #
US 9,287,607 B2
Filed 07/31/2012

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer with reduced fields  
Patent #
US 9,306,635 B2
Filed 01/28/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless power harvesting and transmission with heterogeneous signals  
Patent #
US 9,318,898 B2
Filed 06/25/2015

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer for packaging  
Patent #
US 9,318,257 B2
Filed 10/18/2012

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Mechanically removable wireless power vehicle seat assembly  
Patent #
US 9,318,922 B2
Filed 03/15/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer for rechargeable batteries  
Patent #
US 9,343,922 B2
Filed 06/27/2012

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer using variable size resonators and system monitoring  
Patent #
US 9,369,182 B2
Filed 06/21/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Tunable wireless power architectures  
Patent #
US 9,384,885 B2
Filed 08/06/2012

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Integrated resonatorshield structures  
Patent #
US 9,396,867 B2
Filed 04/14/2014

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Foreign object detection in wireless energy transfer systems  
Patent #
US 9,404,954 B2
Filed 10/21/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Power generation for implantable devices  
Patent #
US 9,421,388 B2
Filed 08/07/2014

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer  
Patent #
US 9,444,265 B2
Filed 05/22/2012

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Foreign object detection in wireless energy transfer systems  
Patent #
US 9,442,172 B2
Filed 09/10/2012

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer converters  
Patent #
US 9,444,520 B2
Filed 07/19/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Systems and methods for wireless power system with improved performance and/or ease of use  
Patent #
US 9,449,757 B2
Filed 11/18/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer  
Patent #
US 9,450,422 B2
Filed 03/24/2015

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless nonradiative energy transfer  
Patent #
US 9,450,421 B2
Filed 02/24/2015

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Foreign object detection in wireless energy transfer systems  
Patent #
US 9,465,064 B2
Filed 10/21/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer for implantable devices  
Patent #
US 9,496,719 B2
Filed 09/25/2014

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer  
Patent #
US 9,509,147 B2
Filed 03/08/2013

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy transfer in lossy environments  
Patent #
US 9,515,495 B2
Filed 10/30/2015

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless power system including impedance matching network  
Patent #
US 9,515,494 B2
Filed 04/09/2015

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wirelessly powered audio devices  
Patent #
US 9,544,683 B2
Filed 10/17/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Method and apparatus to align wireless charging coils  
Patent #
US 9,577,449 B2
Filed 01/17/2014

Current Assignee
Honda Motor Company

Sponsoring Entity
Honda Motor Company

Wireless energy transfer for implantable devices  
Patent #
US 9,577,436 B2
Filed 06/06/2011

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer using variable size resonators and system monitoring  
Patent #
US 9,584,189 B2
Filed 06/21/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Resonator enclosure  
Patent #
US 9,595,378 B2
Filed 09/19/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer using variable size resonators and systems monitoring  
Patent #
US 9,596,005 B2
Filed 06/21/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer using repeater resonators  
Patent #
US 9,601,261 B2
Filed 04/13/2010

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Low AC resistance conductor designs  
Patent #
US 9,601,270 B2
Filed 02/26/2014

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Multiple connected resonators with a single electronic circuit  
Patent #
US 9,601,266 B2
Filed 10/25/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Communication in wireless energy transfer systems  
Patent #
US 9,602,168 B2
Filed 10/28/2014

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Environment optimization for space based on presence and activities  
Patent #
US 9,642,219 B2
Filed 06/16/2016

Current Assignee
Steelcase Incorporated

Sponsoring Entity
Steelcase Incorporated

Wireless energy transfer for medical applications  
Patent #
US 9,662,161 B2
Filed 12/12/2014

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Method and device for wireless power source for an instrument  
Patent #
US 9,685,148 B2
Filed 12/31/2015

Current Assignee
Fishman Transducers Incorporated

Sponsoring Entity
Fishman Transducers Incorporated

Secure wireless energy transfer  
Patent #
US 9,698,607 B2
Filed 11/18/2014

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer converters  
Patent #
US 9,711,991 B2
Filed 07/19/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer in lossy environments  
Patent #
US 9,742,204 B2
Filed 04/13/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

System for wireless energy distribution in a vehicle  
Patent #
US 9,744,858 B2
Filed 04/15/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer resonator thermal management  
Patent #
US 9,748,039 B2
Filed 01/30/2015

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Resonator arrays for wireless energy transfer  
Patent #
US 9,754,718 B2
Filed 11/26/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless power system with associated impedance matching network  
Patent #
US 9,780,605 B2
Filed 07/31/2015

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wirelessly charged battery system  
Patent #
US 9,780,573 B2
Filed 02/03/2015

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Tunable wireless power architectures  
Patent #
US 9,787,141 B2
Filed 05/31/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Systems and mobile application for electric wireless charging stations  
Patent #
US 9,796,280 B2
Filed 03/25/2013

Current Assignee
HEVO Inc.

Sponsoring Entity
HEVO Inc.

Flexible resonator attachment  
Patent #
US 9,806,541 B2
Filed 07/24/2015

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Efficient nearfield wireless energy transfer using adiabatic system variations  
Patent #
US 9,831,682 B2
Filed 08/13/2014

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless nonradiative energy transfer  
Patent #
US 9,831,722 B2
Filed 03/29/2016

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless power transmission systems for elevators  
Patent #
US 9,837,860 B2
Filed 05/05/2015

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless power transfer systems with shaped magnetic components  
Patent #
US 9,842,687 B2
Filed 04/16/2015

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer for wearables  
Patent #
US 9,843,217 B2
Filed 12/30/2015

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Impedance matching in wireless power systems  
Patent #
US 9,843,228 B2
Filed 07/27/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless power harvesting and transmission with heterogeneous signals  
Patent #
US 9,843,230 B2
Filed 03/23/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Systems and methods for wireless power system with improved performance and/or ease of use  
Patent #
US 9,842,684 B2
Filed 11/18/2013

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Resonator balancing in wireless power transfer systems  
Patent #
US 9,842,688 B2
Filed 07/08/2015

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Method and system for locating resources and communicating within an enterprise  
Patent #
US 9,852,388 B1
Filed 06/10/2016

Current Assignee
Steelcase Incorporated

Sponsoring Entity
Steelcase Incorporated

Wireless power transfer frequency adjustment  
Patent #
US 9,857,821 B2
Filed 08/14/2014

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless power transfer systems with shield openings  
Patent #
US 9,892,849 B2
Filed 04/16/2015

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Smart workstation method and system  
Patent #
US 9,921,726 B1
Filed 06/03/2016

Current Assignee
Steelcase Incorporated

Sponsoring Entity
Steelcase Incorporated

Phase and amplitude detection in wireless energy transfer systems  
Patent #
US 9,929,721 B2
Filed 10/12/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Power generation for implantable devices  
Patent #
US 9,943,697 B2
Filed 07/27/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless power transfer for a seatvesthelmet system  
Patent #
US 9,948,145 B2
Filed 12/31/2014

Current Assignee
Witricity Corporation

Sponsoring Entity
Dish Technologies LLC

Object detection for wireless energy transfer systems  
Patent #
US 9,952,266 B2
Filed 02/13/2015

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless power transfer systems for surfaces  
Patent #
US 9,954,375 B2
Filed 06/19/2015

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Space guidance and management system and method  
Patent #
US 9,955,318 B1
Filed 06/01/2016

Current Assignee
Steelcase Incorporated

Sponsoring Entity
Steelcase Incorporated

Foreign object detection in wireless energy transfer systems  
Patent #
US 10,018,744 B2
Filed 05/07/2015

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Foreign object detection in wireless energy transfer systems  
Patent #
US 10,027,184 B2
Filed 06/01/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Environment optimization for space based on presence and activities  
Patent #
US 10,057,963 B2
Filed 03/14/2017

Current Assignee
Steelcase Incorporated

Sponsoring Entity
Steelcase Incorporated

Foreign object detection in wireless energy transfer systems  
Patent #
US 10,063,110 B2
Filed 10/19/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

PWM capacitor control  
Patent #
US 10,063,104 B2
Filed 02/08/2017

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Voltage source isolation in wireless power transfer systems  
Patent #
US 10,075,019 B2
Filed 11/21/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer for implantable devices  
Patent #
US 10,084,348 B2
Filed 10/31/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer  
Patent #
US 10,097,044 B2
Filed 06/20/2016

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Wireless energy transfer for photovoltaic panels  
Patent #
US 10,097,011 B2
Filed 04/30/2015

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Method and system for locating resources and communicating within an enterprise  
Patent #
US 10,121,113 B1
Filed 10/20/2017

Current Assignee
Steelcase Incorporated

Sponsoring Entity
Steelcase Incorporated

Detecting and deterring foreign objects and living objects at wireless charging stations  
Patent #
US 10,128,697 B1
Filed 05/01/2017

Current Assignee
HEVO Inc.

Sponsoring Entity
HEVO Inc.

Wireless nonradiative energy transfer  
Patent #
US 10,141,790 B2
Filed 10/25/2017

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Dynamic tuning in wireless energy transfer systems  
Patent #
US 10,141,788 B2
Filed 10/14/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless energy transfer for rechargeable batteries  
Patent #
US 10,158,251 B2
Filed 04/01/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Method and system for locating resources and communicating within an enterprise  
Patent #
US 10,161,752 B1
Filed 08/25/2017

Current Assignee
Steelcase Incorporated

Sponsoring Entity
Steelcase Incorporated

Systems and methods for wireless power system with improved performance and/or ease of use  
Patent #
US 10,186,372 B2
Filed 12/07/2017

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless power transfer systems with shield openings  
Patent #
US 10,186,373 B2
Filed 02/01/2018

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Foreign object detection in wireless energy transfer systems  
Patent #
US 10,211,681 B2
Filed 10/07/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Tunable wireless energy transfer systems  
Patent #
US 10,218,224 B2
Filed 04/21/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Space guidance and management system and method  
Patent #
US 10,225,707 B1
Filed 03/26/2018

Current Assignee
Steelcase Incorporated

Sponsoring Entity
Steelcase Incorporated

Flexible resonator attachment  
Patent #
US 10,230,243 B2
Filed 10/27/2017

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

RFID tag and transponder detection in wireless energy transfer systems  
Patent #
US 10,248,899 B2
Filed 10/06/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Controlling wireless power transfer systems  
Patent #
US 10,263,473 B2
Filed 02/02/2017

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Content amplification system and method  
Patent #
US 10,264,213 B1
Filed 12/13/2017

Current Assignee
Steelcase Incorporated

Sponsoring Entity
Steelcase Incorporated

Wirelessly powered audio devices  
Patent #
US 10,264,352 B2
Filed 01/09/2017

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Shielding in vehicle wireless power systems  
Patent #
US 10,300,800 B2
Filed 03/31/2017

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless power sources and devices  
Patent #
US 10,340,745 B2
Filed 06/13/2017

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless power harvesting and transmission with heterogeneous signals  
Patent #
US 10,348,136 B2
Filed 12/07/2017

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Method and system for facilitating collaboration sessions  
Patent #
US 10,353,664 B2
Filed 06/27/2017

Current Assignee
Steelcase Incorporated

Sponsoring Entity
Steelcase Incorporated

Parking alignment sequence for wirelessly charging an electric vehicle  
Patent #
US 10,369,894 B2
Filed 10/21/2016

Current Assignee
HEVO Inc.

Sponsoring Entity
HEVO Inc.

Foreign object detection in wireless energy transfer systems  
Patent #
US 10,371,848 B2
Filed 07/03/2018

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Integrated resonatorshield structures  
Patent #
US 10,410,789 B2
Filed 06/02/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Power generation for implantable devices  
Patent #
US 10,420,951 B2
Filed 04/02/2018

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems  
Patent #
US 10,424,976 B2
Filed 11/18/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Microclimate control systems and methods  
Patent #
US 10,433,646 B1
Filed 06/27/2017

Current Assignee
Steelcase Incorporated

Sponsoring Entity
Steelcase Incorporated

Object and motion detection in wireless power transfer systems  
Patent #
US 10,446,317 B2
Filed 08/25/2017

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Smart workstation method and system  
Patent #
US 10,459,611 B1
Filed 02/15/2018

Current Assignee
Steelcase Incorporated

Sponsoring Entity
Steelcase Incorporated

Wireless energy transfer resonator thermal management  
Patent #
US 10,536,034 B2
Filed 08/10/2017

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Signaling in wireless power systems  
Patent #
US 10,559,980 B2
Filed 06/13/2017

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Environment optimization for space based on presence and activities  
Patent #
US 10,561,006 B2
Filed 07/20/2018

Current Assignee
Steelcase Incorporated

Sponsoring Entity
Steelcase Incorporated

Enclosures for high power wireless power transfer systems  
Patent #
US 10,574,091 B2
Filed 04/06/2016

Current Assignee
Witricity Corporation

Sponsoring Entity
Witricity Corporation

Wireless nonradiative energy transfer  
Patent #
US 20070222542A1
Filed 07/05/2006

Current Assignee
Massachusetts Institute of Technology

Sponsoring Entity
Massachusetts Institute of Technology

Antenna with nearfield radiation control  
Patent #
US 20040113847A1
Filed 12/12/2002

Current Assignee
Blackberry Limited

Sponsoring Entity
Blackberry Limited

Device for contactless transmission of data  
Patent #
US 6,533,178 B1
Filed 11/15/2000

Current Assignee
Infineon Technologies AG

Sponsoring Entity
Infineon Technologies AG

Wireless communications using near field coupling  
Patent #
US 5,437,057 A
Filed 12/03/1992

Current Assignee
Xerox Corporation

Sponsoring Entity
Xerox Corporation

2 Claims
 1. An apparatus for use in wireless energy transfer, the apparatus comprising:
a first resonator structure configured for energy transfer with a second resonator structure, over a distance D larger than a characteristic size L_{1 }of said first resonator structure and larger than a characteristic size L_{2 }of said second resonator structure, wherein the energy transfer has a rate κ and
is mediated by evanescenttail coupling of a resonant field of the first resonator structure and a resonant field of the second resonator structure, whereinsaid resonant field of the first resonator structure has a resonance angular frequency ω
_{1}, a resonance frequencywidth Γ
_{1}, and a resonance quality factor Q_{1}=ω
_{1}/2Γ
_{1}, andsaid resonant field of the second resonator structure has a resonance angular frequency ω
_{2}, a resonance frequencywidth Γ
_{2}, and a resonance quality factor Q_{2}=ω
_{2}/2Γ
_{2},wherein the absolute value of the difference of said angular frequencies ω
_{1 }and ω
_{2 }is smaller than the broader of said resonant widths Γ
_{1 }and Γ
_{2},and further comprising a power supply coupled to the first structure and configured to drive the first resonator structure or the second resonator structure at an angular frequency away from the resonance angular frequencies and shifted towards a frequency corresponding to an odd normal mode for the resonator structures to reduce radiation from the resonator structures by destructive farfield interference.
 2. 63. (canceled)
1 Specification
Pursuant to U.S.C. §120, this application is a continuation of and claims priority to U.S. application Ser. No. 12/466,065, filed May 14, 2009, which claims priority to U.S. Provisional Application Ser. No. 61/127,661, filed May 14, 2008.
This application is also related by subject matter to the following commonly owned applications: U.S. Utility patent application Ser. No. 12/055,963, filed Mar. 26, 2008, now U.S. Pat. No. 7,825,543 issued on Nov. 20, 2010; U.S. Utility patent application Ser. No. 11/481,077, filed Jul. 5, 2006, now U.S. Pat. No. 7,741,734 issued on Jun. 22, 2010; U.S. Provisional Application Ser. No. 60/698,442, filed Jul. 12, 2005; U.S. Provisional Application Ser. No. 60/908,383, filed Mar. 27, 2007; U.S. Provisional Application Ser. No. 60/908,666, filed Mar. 28, 2007; and International Application No. PCT/US2007/070892, filed Jun. 11, 2007.
The contents of the prior applications are incorporated herein by reference in their entirety.
This invention was made with government support under grant number W911NF07D0004 awarded by the Army Research Office. The government has certain rights in this invention.
The disclosure relates to wireless energy transfer. Wireless energy transfer can for example, be useful in such applications as providing power to autonomous electrical or electronic devices.
Radiative modes of omnidirectional antennas (which work very well for information transfer) are not suitable for such energy transfer, because a vast majority of energy is wasted into free space. Directed radiation modes, using lasers or highlydirectional antennas, can be efficiently used for energy transfer, even for long distances (transfer distance L_{TRANS}>>L_{DEV}, where L_{DEV }is the characteristic size of the device and/or the source), but require existence of an uninterruptible lineofsight and a complicated tracking system in the case of mobile objects. Some transfer schemes rely on induction, but are typically restricted to very closerange (L_{TRANS}<<L_{DEV}) or low power (˜mW) energy transfers.
The rapid development of autonomous electronics of recent years (e.g. laptops, cellphones, household robots, that all typically rely on chemical energy storage) has led to an increased need for wireless energy transfer.
Efficient wireless energytransfer between two resonant objects can be achieved at midrange distances, provided these resonant objects are designed to operate in the ‘strongcoupling’ regime. We describe an implementation of a method to increase the efficiency of energytransfer or to suppress the power radiated, which can be harmful or a cause of interference to other communication systems, by utilizing destructive interference between the radiated farfields of the resonant coupled objects. ‘Strong coupling’ is a necessary condition for efficient energytransfer, in the absence of farfield interference. ‘Strong coupling’ can be demonstrated in the case of realistic systems: selfresonant conducting coils, capacitivelyloaded conducting coils, inductivelyloaded conducting rods and dielectric disks, all bearing highQ electromagnetic resonant modes. Also, an analytical model can be developed to take farfield interference into account for wireless energytransfer systems. The analytical model can be used to demonstrate the efficiency enhancement and radiation suppression, in the presence of interference. In an example implementation, we describe improved performance based on the above principles in the case of two realistic systems: capacitivelyloaded conducting coils and dielectric disks, both bearing highQ electromagnetic resonant modes and farfield interference.
In an aspect, an apparatus for use in wireless energy transfer includes a first resonator structure configured for energy transfer with a second resonator structure, over a distance D larger than a characteristic size L_{1 }of said first resonator structure and larger than a characteristic size L_{2 }of said second resonator structure. The energy transfer has a rate κ and is mediated by evanescenttail coupling of a resonant field of the first resonator structure and a resonant field of the second resonator structure. The resonant field of the first resonator structure has a resonance angular frequency ω_{1}, a resonance frequencywidth Γ_{1}, and a resonance quality factor Q_{1}=ω_{1}/2Γ_{1}, and the said resonant field of the second resonator structure has a resonance angular frequency ω_{2}, a resonance frequencywidth Γ_{2}, and a resonance quality factor Q_{2}=ω_{2}/2Γ_{2}. The absolute value of the difference of said angular frequencies ω_{1 }and ω_{2 }is smaller than the broader of said resonant widths Γ_{1 }and Γ_{2}. The apparatus also includes a power supply coupled to the first structure and configured to drive the first resonator structure or the second resonator structure at an angular frequency away from the resonance angular frequencies and shifted towards a frequency corresponding to an odd normal mode for the resonator structures to reduce radiation from the resonator structures by destructive farfield interference.
In some examples, the power supply is configured to drive the first resonator structure or the second resonator structure at the angular frequency away from the resonance angular frequencies and shifted towards the frequency corresponding to an odd normal mode for the resonator structures to substantially suppress radiation from the resonator structures by destructive farfield interference.
In an aspect, a method for wireless energy transfer involves a first resonator structure configured for energy transfer with a second resonator structure, over a distance D larger than a characteristic size L_{1 }of said first resonator structure and larger than a characteristic size L_{2 }of said second resonator structure, wherein the energy transfer has a rate κ and is mediated by evanescenttail coupling of a resonant field of the first resonator structure and a resonant field of the second resonator structure, said resonant field of the first resonator structure has a resonance angular frequency ω_{1}, a resonance frequencywidth Γ_{1}, and a resonance quality factor Q_{1}=ω_{1}/2Γ_{1}, and said resonant field of the second resonator structure has a resonance angular frequency ω_{2}, a resonance frequencywidth Γ_{2}, and a resonance quality factor Q_{2}=ω_{2}/2Γ_{2}, the absolute value of the difference of said angular frequencies ω_{1 }and ω_{2 }is smaller than the broader of said resonant widths Γ_{1 }and Γ_{2}. The method includes driving the first resonator structure or the second resonator structure at an angular frequency away from the resonance angular frequencies and shifted towards a frequency corresponding to an odd normal mode for the resonator structures to reduce radiation from the resonator structures by destructive farfield interference.
In some examples, the first resonator structure or the second resonator structure is driven at the angular frequency away from the resonance angular frequencies and shifted towards the frequency corresponding to an odd normal mode for the resonator structures to substantially suppress radiation from the resonator structures by destructive farfield interference.
In an aspect, an apparatus for use in wireless energy transfer includes a first resonator structure configured for energy transfer with a second resonator structure, over a distance D larger than a characteristic size L_{1 }of said first resonator structure and larger than a characteristic size L_{2 }of said second resonator structure. The energy transfer has a rate κ and is mediated by evanescenttail coupling of a resonant field of the first resonator structure and a resonant field of the second resonator structure. The resonant field of the first resonator structure has a resonance angular frequency ω_{1}, a resonance frequencywidth Γ_{1}, and a resonance quality factor Q_{1}=ω_{1}/2Γ_{1}, and the resonant field of the second resonator structure has a resonance angular frequency ω_{2}, a resonance frequencywidth Γ_{2}, and a resonance quality factor Q_{2}=ω_{2}/2Γ_{2}. The absolute value of the difference of said angular frequencies ω_{1 }and ω_{2 }is smaller than the broader of said resonant widths Γ_{1 }and Γ_{2}. For a desired range of the distances D, the resonance angular frequencies for the resonator structures increase transmission efficiency T by accounting for radiative interference, wherein the increase is relative to a transmission efficiency T calculated without accounting for the radiative interference.
In some examples, the resonance angular frequencies for the resonator structures are selected by optimizing the transmission efficiency T to account for both a resonance quality factor U and an interference factor V.
In an aspect, a method involves designing a wireless energy transfer apparatus, the apparatus including a first resonator structure configured for energy transfer with a second resonator structure, over a distance D larger than a characteristic size L_{1 }of said first resonator structure and larger than a characteristic size L_{2 }of said second resonator structure, wherein the energy transfer has a rate κ and is mediated by evanescenttail coupling of a resonant field of the first resonator structure and a resonant field of the second resonator structure, wherein said resonant field of the first resonator structure has a resonance angular frequency ω_{1}, a resonance frequencywidth Γ_{1}, and a resonance quality factor Q_{1}=ω_{1}/2Γ_{1}, and said resonant field of the second resonator structure has a resonance angular frequency ω_{2}, a resonance frequencywidth Γ_{2}, and a resonance quality factor Q_{2}=ω_{2}/2Γ_{2}, wherein the absolute value of the difference of said angular frequencies ω_{1 }and ω_{2 }is smaller than the broader of said resonant widths Γ_{1 }and Γ_{2}. The method includes selecting the resonance angular frequencies for the resonator structures to substantially optimize the transmission efficiency by accounting for radiative interference between the resonator structures.
In some examples, the resonance angular frequencies for the resonator structures are selected by optimizing the transmission efficiency T to account for both a resonance quality factor U and an interference factor V.
In an aspect, an apparatus for use in wireless energy transfer includes a first resonator structure configured for energy transfer with a second resonator structure over a distance D. The energy transfer is mediated by evanescenttail coupling of a resonant field of the first resonator structure and a resonant field of the second resonator structure, with a coupling factor k. The resonant field of the first resonator structure has a resonance angular frequency ω_{1}, a resonance frequencywidth Γ_{1}, and a resonance quality factor Q_{1}=ω_{1}/2Γ_{1}, and is radiative in the far field, with an associated radiation quality factor Q_{1,rad}≧Q_{1}, and the resonant field of the second resonator structure has a resonance angular frequency ω_{2}, a resonance frequencywidth Γ_{2}, and a resonance quality factor Q_{2}=ω_{2}/2Γ_{2}, and is radiative in the far field, with an associated radiation quality factor Q_{2,rad}≧Q_{2}. An absolute value of a difference of said angular frequencies ω_{1 }and ω_{2 }is smaller than broader of said resonant widths Γ_{1 }and Γ_{2}, and an average resonant angular frequency is defined as ω_{o}=√{square root over (ω_{1}ω_{2})}, corresponding to an average resonant wavelength λ_{o}=2πc/ω_{o}, where c is the speed of light in free space, and a strongcoupling factor being defined as U=k√{square root over (Q_{1}Q_{2})}. The apparatus is configured to employ interference between said radiative far fields of the resonant fields of the first and second resonator, with an interference factor V_{rad}, to reduce a total amount of radiation from the apparatus compared to an amount of radiation from the apparatus in the absence of interference, a stronginterference factor being defined as
V=V_{rad}√{square root over ((Q_{1}/Q_{1,rad})(Q_{2}/Q_{2,rad}))}{square root over ((Q_{1}/Q_{1,rad})(Q_{2}/Q_{2,rad}))}.
The following are examples within the scope of this aspect.
The apparatus has Q_{1}/Q_{1,rad}≧0.01 and Q_{2}/Q_{2,rad}≧0 0.01. The apparatus has Q_{1}/Q_{1,rad}≧0.1 and Q_{2}/Q_{2,rad}≧0.1. The apparatus has D/λ_{o }larger than 0.001 and the stronginterference factor V is larger than 0.01. The apparatus has D/λ_{o }larger than 0.001 and the stronginterference factor V is larger than 0.1. The apparatus includes the second resonator structure.
During operation, a power generator is coupled to one of the first and second resonant structure, with a coupling rate κ_{g}, and is configured to drive the resonator structure, to which it is coupled, at a driving frequency f, corresponding to a driving angular frequency ω=2πf, wherein U_{g }is defined as κ_{g}/Γ_{1}, if the power generator is coupled to the first resonator structure and defined as κ_{g}/Γ_{2}, if the power generator is coupled to the second resonator structure. The driving frequency is different from the resonance frequencies of the first and second resonator structures and is closer to a frequency corresponding to an odd normal mode of the system of the two resonator structures, wherein the detuning of the first resonator from the driving frequency is defined as D_{1}=(ω−ω_{1})/Γ_{1 }and the detuning of the second resonator structure from the driving frequency is defined as D_{2}=(ω−ω_{2})/Γ_{2}.
D_{1 }is approximately equal to UV_{rad }and D_{2 }is approximately equal to UV_{rad}. U_{g }is chosen to maximize the ratio of the energytransfer efficiency to the radiation efficiency. U_{g }is approximately equal to √{square root over (1+U^{2}−V_{rad}^{2}U^{2}+V^{2}−2VV_{rad})}. f is at least larger than 100 kHz and smaller than 500 MHz. f is at least larger than 1 MHz and smaller than 50 MHz. The apparatus further includes the power generator. During operation, a power load is coupled to the resonant structure to which the power generator is not coupled, with a coupling rate κ_{l}, and is configured to receive from the resonator structure, to which it is coupled, a usable power, wherein U_{l }is defined as κ_{l}/Γ_{1}, if the power load is coupled to the first resonator structure and defined as κ_{l}/Γ_{2}, if the power load is coupled to the second resonator structure. U_{l }is chosen to maximize the ratio of the energytransfer efficiency to the radiation efficiency. The driving frequency is different from the resonance frequencies of the first and second resonator structures and is closer to a frequency corresponding to an odd normal mode of the system of the two resonator structures, wherein the detuning of the first resonator from the driving frequency is defined as D_{1}=(ω−ω_{1})/Γ_{1 }and is approximately equal to UV_{rad}, and the detuning of the second resonator structure from the driving frequency is defined as D_{2}=(ω−ω_{2})/Γ_{2 }and is approximately equal to UV_{rad}, and U_{l }is approximately equal to √{square root over (1+U^{2}−V_{rad}^{2}U^{2}+V^{2}−2VV_{rad})}.
At least one of the first and second resonator structures comprises a capacitively loaded loop or coil of at least one of a conducting wire, a conducting Litz wire, and a conducting ribbon. The characteristic size of said loop or coil is less than 30 cm and the width of said conducting wire or Litz wire or ribbon is less than 2 cm. The characteristic size of said loop or coil is less than 1 m and the width of said conducting wire or Litz wire or ribbon is less than 2 cm.
The apparatus further includes a feedback mechanism for maintaining the resonant frequency of one or more of the resonant objects. The feedback mechanism comprises an oscillator with a fixed driving frequency and is configured to adjust the resonant frequency of the one or more resonant objects to be detuned by a fixed amount with respect to the fixed frequency.
In an aspect, an apparatus for use in wireless energy transfer includes a first resonator structure configured for energy transfer with a second resonator structure over a distance D. The energy transfer is mediated by evanescenttail coupling of a resonant field of the first resonator structure and a resonant field of the second resonator structure, with a coupling factor k. The resonant field of the first resonator structure has a resonance angular frequency ω_{1}, a resonance frequencywidth Γ_{1}, and a resonance quality factor Q_{1}=ω_{1}/2Γ_{1}, and is radiative in the far field, with an associated radiation quality factor Q_{1,rad}≧Q_{1}, and the resonant field of the second resonator structure has a resonance angular frequency ω_{2}, a resonance frequencywidth Γ_{2}, and a resonance quality factor Q_{2}=ω_{2}/2Γ_{2}, and is radiative in the far field, with an associated radiation quality factor Q_{2,rad}≧Q_{2}. An absolute value of a difference of said angular frequencies ω_{1 }and ω_{2 }is smaller than the broader of said resonant widths Γ_{1 }and Γ_{2}, and an average resonant angular frequency is defined as ω_{o}=√{square root over (ω_{1}ω_{2})}, corresponding to an average resonant wavelength λ_{o}=2πc/ω_{o}, where c is the speed of light in free space, and a strongcoupling factor is defined as U=k√{square root over (Q_{1}Q_{2})}. The apparatus is configured to employ interference between said radiative far fields of the resonant fields of the first and second resonator, with an interference factor V_{rad}, to increase efficiency of energy transfer for the apparatus compared to efficiency for the apparatus in the absence of interference, the stronginterference factor being defined as V=V_{rad}√{square root over ((Q_{1}/Q_{1,rad})(Q_{2}/Q_{2,rad}))}{square root over ((Q_{1}/Q_{1,rad})(Q_{2}/Q_{2,rad}))}.
The following are examples within the scope of this aspect.
The apparatus has Q_{1}/Q_{1,rad}≧0.05 and Q_{2}/Q_{2,rad}≧0.05. The apparatus has Q_{1}/Q_{1,rad}≧0.5 and Q_{2}/Q_{2,rad}≧0.5. The apparatus has D/λ_{o }larger than 0.01 and the stronginterference factor V is larger than 0.05. The apparatus has D/λ_{o }larger than 0.01 and the stronginterference factor V is larger than 0.5. The apparatus further includes the second resonator structure.
During operation, a power generator is coupled to one of the first and second resonant structure, with a coupling rate κ_{g}, and is configured to drive the resonator structure, to which it is coupled, at a driving frequency f, corresponding to a driving angular frequency ω=2πf, wherein U_{g }is defined as κ_{g}/Γ_{1}, if the power generator is coupled to the first resonator structure and defined as κ_{g}/Γ_{2}, if the power generator is coupled to the second resonator structure. The driving frequency is different from the resonance frequencies of the first and second resonator structures and is closer to a frequency corresponding to an odd normal mode of the system of the two resonator structures, wherein the detuning of the first resonator from the driving frequency is defined as D_{1}=(ω−ω_{1})/Γ_{1 }and the detuning of the second resonator structure from the driving frequency is defined as D_{2}=(ω−ω_{2})/Γ_{2}.
D_{1 }is approximately equal to UV and D_{2 }is approximately equal to UV. U_{g }is chosen to maximize the energytransfer efficiency. U_{g }is approximately equal to √{square root over ((1+U^{2})(1−V^{2}))}{square root over ((1+U^{2})(1−V^{2}))}. f is at least larger than 100 kHz and smaller than 500 MHz. f is at least larger than 1 MHz and smaller than 50 MHz. The apparatus further includes the power generator.
During operation, a power load is coupled to the resonant structure to which the power generator is not coupled, with a coupling rate κ_{1}, and is configured to receive from the resonator structure, to which it is coupled, a usable power, wherein U_{l }is defined as κ_{l}/Γ_{1}, if the power load is coupled to the first resonator structure and defined as κ_{l}/Γ_{2}, if the power load is coupled to the second resonator structure. U_{l }is chosen to maximize the energytransfer efficiency. The driving frequency is different from the resonance frequencies of the first and second resonator structures and is closer to a frequency corresponding to an odd normal mode of the system of the two resonator structures, wherein the detuning of the first resonator from the driving frequency is defined as D_{1}=(ω−ω_{1})/Γ_{1 }and is approximately equal to UV, and the detuning of the second resonator structure from the driving frequency is defined as D_{2}=(ω−ω_{2})/Γ_{2 }and is approximately equal to UV, and U_{l }is approximately equal to √{square root over ((1+U^{2})(1−V^{2}))}{square root over ((1+U^{2})(1−V^{2}))}.
At least one of the first and second resonator structures comprises a capacitively loaded loop or coil of at least one of a conducting wire, a conducting Litz wire, and a conducting ribbon. The characteristic size of said loop or coil is less than 30 cm and the width of said conducting wire or Litz wire or ribbon is less than 2 cm. The characteristic size of said loop or coil is less than 1m and the width of said conducting wire or Litz wire or ribbon is less than 2 cm. The apparatus includes a feedback mechanism for maintaining the resonant frequency of one or more of the resonant objects. The feedback mechanism comprises an oscillator with a fixed driving frequency and is configured to adjust the resonant frequency of the one or more resonant objects to be detuned by a fixed amount with respect to the fixed frequency. The feedback mechanism is configured to monitor an efficiency of the energy transfer, and adjust the resonant frequency of the one or more resonant objects to maximize the efficiency. The resonance angular frequencies for the resonator structures are selected to optimize the energytransfer efficiency by accounting for both the strongcoupling factor U and the stronginterference interference factor V.
In an aspect, a method for wireless energy transfer includes providing a first resonator structure configured for energy transfer with a second resonator structure over a distance D, wherein the energy transfer is mediated by evanescenttail coupling of a resonant field of the first resonator structure and a resonant field of the second resonator structure, with a coupling factor k, wherein said resonant field of the first resonator structure has a resonance angular frequency ω_{1}, a resonance frequencywidth Γ_{1}, and a resonance quality factor Q_{1}=ω_{1}/2Γ_{1}, and is radiative in the far field, with an associated radiation quality factor Q_{1,rad}≧Q_{1}, and resonant field of the second resonator structure has a resonance angular frequency ω_{2}, a resonance frequencywidth Γ_{2}, and a resonance quality factor Q_{2}=ω_{2}/2Γ_{2}, and is radiative in the far field, with an associated radiation quality factor Q_{2,rad}≧Q_{2}, wherein an absolute value of a difference of said angular frequencies ω_{1 }and ω_{2 }is smaller than broader of said resonant widths Γ_{1 }and Γ_{2}, and an average resonant angular frequency is defined as ω_{o}=√{square root over (ω_{1}ω_{2})}, corresponding to an average resonant wavelength λ_{o}=2πc/ω_{o}, where c is the speed of light in free space, and the strongcoupling factor is defined as U=k√{square root over (Q_{1}Q_{2})}, and employing interference between said radiative far fields of the resonant fields of the first and second resonator, with an interference factor V_{rad}, to reduce a total amount of radiation from the first and second resonator compared to an amount of radiation from the first and second resonator in the absence of interference, a stronginterference factor being defined as V=V_{rad}√{square root over ((Q_{1}/Q_{1,rad})(Q_{2}/Q_{2,rad}))}{square root over ((Q_{1}/Q_{1,rad})(Q_{2}/Q_{2,rad}))}.
The following are examples within the scope of this aspect.
The method has Q_{1}/Q_{1,rad}≧0.01 and Q_{2}/Q_{2,rad}≧0.01. During operation, a power generator is coupled to one of the first and second resonant structure and is configured to drive the resonator structure, to which it is coupled, at a driving frequency f, corresponding to a driving angular frequency ω=2πf, wherein the driving frequency is different from the resonance frequencies of the first and second resonator structures and is closer to a frequency corresponding to an odd normal mode of the system of the two resonator structures. During operation, a power load is coupled to the resonant structure to which the power generator is not coupled and is configured to receive from the resonator structure, to which it is coupled, a usable power. In an aspect, a method for wireless energy transfer includes providing a first resonator structure configured for energy transfer with a second resonator structure over a distance D, wherein the energy transfer is mediated by evanescenttail coupling of a resonant field of the first resonator structure and a resonant field of the second resonator structure, with a coupling factor k, wherein said resonant field of the first resonator structure has a resonance angular frequency ω_{1}, a resonance frequencywidth Γ_{1}, and a resonance quality factor Q_{1}=ω_{1}/2Γ_{1}, and is radiative in the far field, with an associated radiation quality factor Q_{1,rad}≧Q_{1}, and said resonant field of the second resonator structure has a resonance angular frequency ω_{2}, a resonance frequencywidth Γ_{2}, and a resonance quality factor Q_{2}=ω_{2}/2Γ_{2}, and is radiative in the far field, with an associated radiation quality factor Q_{2,rad}≧Q_{2}, wherein an absolute value of the difference of said angular frequencies ω_{1 }and ω_{2 }is smaller than the broader of said resonant widths Γ_{1 }and Γ_{2}, and an average resonant angular frequency is defined as ω_{o}=√{square root over (ω_{1}ω_{2})}, corresponding to an average resonant wavelength λ_{o}=2πc/ω_{o}, where c is the speed of light in free space, and the strongcoupling factor is defined as U=k√{square root over (Q_{1}Q_{2})}, and employing interference between said radiative far fields of the resonant fields of the first and second resonator, with an interference factor V_{rad}, to increase efficiency of energy transfer between the first and second resonator compared to efficiency of energy transfer between the first and second resonator in the absence of interference, a stronginterference factor being defined as V=V_{rad}√{square root over ((Q_{1}/Q_{1,rad})(Q_{2}/Q_{2,rad}))}{square root over ((Q_{1}/Q_{1,rad})(Q_{2}/Q_{2,rad}))}.
The following are examples within the scope of this aspect.
The method has Q_{1}/Q_{1,rad}≧0.05 and Q_{2}/Q_{2,rad}≧0.05. During operation, a power generator is coupled to one of the first and second resonant structure and is configured to drive the resonator structure, to which it is coupled, at a driving frequency f, corresponding to a driving angular frequency ω=2πf, wherein the driving frequency is different from the resonance frequencies of the first and second resonator structures and is closer to a frequency corresponding to an odd normal mode of the system of the two resonator structures. During operation, a power load is coupled to the resonant structure to which the power generator is not coupled and is configured to receive from the resonator structure, to which it is coupled, a usable power. The resonance angular frequencies for the resonator structures are selected to optimize the energytransfer efficiency by accounting for both the strongcoupling factor U and the stronginterference interference factor V.
Various examples may include any of the above features, alone or in combination. Other features, objects, and advantages of the disclosure will be apparent from the following detailed description.
For example, in some embodiments Q_{1}>100 and Q_{2}>100, Q_{1}>300 and Q_{2}>300, Q_{1}>500 and Q_{2}>500, or Q_{1}>1000 and Q_{2}>1000. In some embodiments, Q_{1}>100 or Q_{2}>100, Q_{1}>300 or Q_{2}>300, Q_{1}>500 or Q_{2}>500, or Q_{1}>1000 or Q_{2}>1000. Furthermore, for example, in some embodiments, the coupling to loss ratio
The characteristic size of an object can be regarded as being equal to the radius of the smallest sphere which can fit around the entire object. The characteristic thickness of an object can be regarded as being, when placed on a flat surface in any arbitrary configuration, the smallest possible height of the highest point of the object above a flat surface. The characteristic width of an object can be regarded as being the radius of the smallest possible circle that the object can pass through while traveling in a straight line. For example, the characteristic width of a cylindrical object is the radius of the cylinder.
It is to be understood that while two resonant objects are shown in the example of
Initially, we present a theoretical framework for understanding nonradiative wireless energy transfer. Note however that it is to be understood that the scope of the invention is not bound by theory.
Different temporal schemes can be employed, depending on the application, to transfer energy between two resonant objects. Here we will consider two particularly simple but important schemes: a onetime finiteamount energytransfer scheme and a continuous finiterate energytransfer (power) scheme.
Let the source and device objects be 1, 2 respectively and their resonance eigemodes, which we will use for the energy exchange, have angular frequencies ω_{1,2}, frequencywidths due to intrinsic (absorption, radiation etc.) losses Γ_{1,2 }and (generally) vector fields F_{1,2}(r), normalized to unity energy. Once the two resonant objects are brought in proximity, they can interact and an appropriate analytical framework for modeling this resonant interaction is that of the wellknown coupledmode theory (CMT). In this picture, the field of the system of the two resonant objects 1, 2 can be approximated by F(r,t)=a_{1}(t)F_{1}(r)+a_{2}(t)F_{2}(r), where a_{1,2 }(t) are the field amplitudes, with a_{1,2}(t)^{2 }equal to the energy stored inside the object 1, 2 respectively, due to the normalization. Then, using e^{−iωt }time dependence, the field amplitudes can be shown to satisfy, to lowest order:
where κ_{11,22 }are the shifts in each object'"'"'s frequency due to the presence of the other, which are a secondorder correction and can be absorbed into the eigenfrequencies by setting ω_{1,2}→ω_{1,2}+κ_{11,22}, and κ_{12,21 }are the coupling coefficients, which from the reciprocity requirement of the system must satisfy κ_{21}=κ_{12}≡κ.
The normal modes of the combined system are found, by substituting [a_{1}(t),a_{2}(t)]=[A_{1},A_{2}]e^{− ωt}, to have complex frequencies
whose splitting we denote as δ_{E}≡
Assume now that at time t=0 the source object 1 has finite energy a_{1}(0)^{2}, while the device object has a_{2}(0)^{2}=0. Since the objects are coupled, energy will be transferred from 1 to 2. With these initial conditions, Eqs. (1) can be solved, predicting the evolution of the device fieldamplitude to be
The energytransfer efficiency will be η_{E}≡a_{2}(t)^{2}/a_{1}(0)^{2}. Note that, at exact resonance ω_{1}=ω_{2 }and in the special case Γ_{1}=Γ_{2}≡Γ_{o}, Eq. (3) can be written as
where T≡Γ_{o}t and U=κ/Γ_{o}.
In some examples, the system designer can adjust the duration of the coupling t at will. In some examples, the duration t can be adjusted to maximize the device energy (and thus efficiency η_{E}). Then, in the special case Γ_{1}=Γ_{2}≡Γ_{o}, it can be inferred from Eq. (4) that η_{E }is maximized for
resulting in an optimal energytransfer efficiency
which is only a function of the couplingtoloss ratio U=κ/Γ_{o}, and tends to unity when U1, as depicted in
In a real wireless energytransfer system, the source object can be connected to a power generator (not shown in
Let the generator be continuously supplying energy to the source object 1 at a rate κ_{1 }and the load continuously draining energy from the device object 2 at a rate κ_{2}. Field amplitudes s_{±1,2}(t) are then defined, so that s_{±1,2}(t)^{2 }is equal to the power ingoing to (for the + sign) or outgoing from (for the − sign) the object 1, 2 respectively, and the CMT equations are modified to
where again we can set ω_{1,2}→ω_{1,2}+κ_{11,22 }and κ_{21}=κ_{12}≡κ.
Assume now that the excitation is at a fixed frequency ω, namely has the form s_{+1}(t)=S_{+1}e^{−iωt}. Then the response of the linear system will be at the same frequency, namely a_{1,2}(t)=A_{1,2}e^{−iωt }and s_{−1,2}(t)=S_{−1,2}e^{iωt}. By substituting these into Eqs. (7), using δ_{1,2}≡ω−ω_{1,2}, and solving the system, we find the fieldamplitude transmitted to the load (S_{21 }scatteringmatrix element)
and the fieldamplitude reflected to the generator (S_{11 }scatteringmatrix element)
where D_{1,2}=δ_{1,2}/Γ_{1,2}, U_{1,2}≡κ_{1,2}/Γ_{1,2 }and U≡κ/Γ_{1}Γ_{2}. Similarly, the scatteringmatrix elements S_{12}, S_{22 }are given by interchanging 12 in Eqs. (8), (9) and, as expected from reciprocity, S_{21}=S_{12}. The coefficients for power transmission (efficiency) and reflection and loss are respectively η_{P}≡S_{21}^{2}=S_{−2}^{2}/S_{+1}^{2 }and S_{11}^{2}=S_{−1}^{2}/S_{+1}^{2 }and 1−S_{21}^{2}−S_{11}^{2}=(2Γ_{1}A_{1}^{2}+2Γ_{2}A_{2}^{2})/S_{+1}^{2}.
In practice, in some implementations, the parameters D_{1,2}, U_{1,2 }can be designed (engineered), since one can adjust the resonant frequencies ω_{1,2 }(compared to the desired operating frequency ω) and the generator/load supply/drain rates κ_{1,2}. Their choice can target the optimization of some system performancecharacteristic of interest:
In some examples, a goal can be to maximize the power transmission (efficiency) η_{P}≡S_{21}^{2 }of the system, so one would require
η_{P}(D_{1,2})=η_{P}(U_{1,2})=0 (10)
Since S_{21 }(from Eq. (8)) is symmetric upon interchanging 12, the optimal values for D_{1,2 }(determined by Eqs. (10)) will be equal, namely D_{1}=D_{2}≡D_{o}, and similarly U_{1}=U_{2}≡U_{o}. Then,
and from the condition η′_{P}(D_{o})=0 we get that, for fixed values of U and U_{o}, the efficiency can be maximized for the following values of the symmetric detuning
which, in the case U>1+U_{o}, can be rewritten for the two frequencies at which the efficiency peaks as
whose splitting we denote as δ_{P}≡
which is known as ‘critical coupling’ condition, whereas for U_{o}<U_{o}* the system is called ‘undercoupled’ and for U_{o}>U_{o}* it is called ‘overcoupled’. The dependence of the efficiency on the frequency detuning D_{o }for different values of U_{o }(including the ‘criticalcoupling’ condition) are shown in
which is again only a function of the couplingtoloss ratio U=κ√{square root over (Γ_{1}Γ_{2})} and tends to unity when U1, as depicted in
In some examples, a goal can be to minimize the power reflection at the side of the generator S_{11}^{2 }and the load S_{22}^{2}, so one would then need
S_{11,22}=0(1∓U_{1}−iD_{1})(1∓U_{2}−iD_{2})+U^{2}=0, (16)
The equations above present ‘impedance matching’ conditions. Again, the set of these conditions is symmetric upon interchanging 12, so, by substituting D_{1}=D_{2}≡D_{o }and U_{1}=U_{2}≡U_{o }into Eqs. (16), we get
(1−iD_{o})^{2}−U_{o}^{2}+U^{2}=0, (17)
from which we easily find that the values of D_{o }and U_{o }that cancel all reflections are again exactly those in Eqs. (14).
It can be seen that, for this particular problem, the two goals and their associated sets of conditions (Eqs. (10) and Eqs. (16)) result in the same optimized values of the intrasource and intradevice parameters D_{1,2}, U_{1,2}. Note that for a lossless system this would be an immediate consequence of power conservation (Hermiticity of the scattering matrix), but this is not apparent for a lossy system.
Accordingly, for any temporal energytransfer scheme, once the parameters specific only to the source or to the device (such as their resonant frequencies and their excitation or loading rates respectively) have been optimally designed, the efficiency monotonically increases with the ratio of the sourcedevice couplingrate to their loss rates. Using the definition of a resonance quality factor Q=ω/2Γ and defining by analogy the coupling factor k≡1/Q_{κ}≡2κ/√{square root over (ω_{1}ω_{2})}, it is therefore exactly this ratio
that has been set as a figureofmerit for any system under consideration for wireless energytransfer, along with the distance over which this ratio can be achieved (clearly, U will be a decreasing function of distance). The desired optimal regime U>1 is called ‘strongcoupling’ regime and it is a necessary and sufficient condition for efficient energytransfer. In particular, for U>1 we get, from Eq. (15), η_{P}*>17%, large enough for practical applications. The figureofmerit U is called the strongcoupling factor. We will further show how to design systems with a large strongcoupling factor.
To achieve a large strongcoupling factor U, in some examples, the energytransfer application preferably uses resonant modes of high quality factors Q, corresponding to low (i.e. slow) intrinsicloss rates Γ. This condition can be satisfied by designing resonant modes where all loss mechanisms, typically radiation and absorption, are sufficiently suppressed.
This suggests that the coupling be implemented using, not the lossy radiative farfield, which should rather be suppressed, but the evanescent (nonlossy) stationary nearfield. To implement an energytransfer scheme, usually more appropriate are finite objects, namely ones that are topologically surrounded everywhere by air, into where the near field extends to achieve the coupling. Objects of finite extent do not generally support electromagnetic states that are exponentially decaying in all directions in air away from the objects, since Maxwell'"'"'s Equations in free space imply that k^{2}=ω^{2}/c^{2}, where k is the wave vector, ω the angular frequency, and c the speed of light, because of which one can show that such finite objects cannot support states of infinite Q, rather there always is some amount of radiation. However, very longlived (socalled “highQ”) states can be found, whose tails display the needed exponential or exponentiallike decay away from the resonant object over long enough distances before they turn oscillatory (radiative). The limiting surface, where this change in the field behavior happens, is called the “radiation caustic”, and, for the wireless energytransfer scheme to be based on the near field rather than the far/radiation field, the distance between the coupled objects must be such that one lies within the radiation caustic of the other. One typical way of achieving a high radiationQ (Q_{rad}) is to design subwavelength resonant objects. When the size of an object is much smaller than the wavelength of radiation in free space, its electromagnetic field couples to radiation very weakly. Since the extent of the nearfield into the area surrounding a finitesized resonant object is set typically by the wavelength, in some examples, resonant objects of subwavelength size have significantly longer evanescent fieldtails. In other words, the radiation caustic is pushed far away from the object, so the electromagnetic mode enters the radiative regime only with a small amplitude.
Moreover, most realistic materials exhibit some nonzero amount of absorption, which can be frequency dependent, and thus cannot support states of infinite Q, rather there always is some amount of absorption. However, very longlived (“highQ”) states can be found, where electromagnetic modal energy is only weakly dissipated. Some typical ways of achieving a high absorptionQ (Q_{abs}) is to use materials which exhibit very small absorption at the resonant frequency and/or to shape the field to be localized more inside the least lossy materials.
Furthermore, to achieve a large strongcoupling factor U, in some examples, the energytransfer application preferably uses systems that achieve a high coupling factor k, corresponding to strong (i.e. fast) coupling rate κ, over distances larger than the characteristic sizes of the objects.
Since finitesized subwavelength resonant objects can often be accompanied with a high Q, as was discussed above and will be seen in examples later on, such an object will typically be the appropriate choice for the possiblymobile resonant deviceobject. In these cases, the electromagnetic field is, in some examples, of quasistatic nature and the distance, up to which sufficient coupling can be achieved, is dictated by the decaylaw of this quasistatic field.
Note, though, that in some examples, the resonant sourceobject will be immobile and thus less restricted in its allowed geometry and size. It can be therefore chosen large enough that the nearfield extent is not limited by the wavelength, and can thus have nearly infinite radiationQ. Some objects of nearly infinite extent, such as dielectric waveguides, can support guided modes, whose evanescent tails are decaying exponentially in the direction away from the object, slowly if tuned close to cutoff, therefore a good coupling can also be achieved over distances quite a few times larger than a characteristic size of the source and/or deviceobject.
In the following, examples of systems suitable for energy transfer of the type described above are described. We will demonstrate how to compute the CMT parameters ω_{1,2}, Q_{1,2 }and k described above and how to choose or design these parameters for particular examples in order to produce a desirable figureofmerit U=κ/√{square root over (Γ_{1}Γ_{2})}=k√{square root over (Q_{1}Q_{2})} at a desired distance D. In some examples, this figureofmerit is maximized when ω_{1,2 }are tuned close to a particular angular frequency ω_{U}.
In some examples, one or more of the resonant objects are selfresonant conducting coils. Referring to
is the maximum amount of positive charge accumulated in one side of the coil (where an equal amount of negative charge always also accumulates in the other side to make the system neutral) and I_{o}=max {I(x)} is the maximum positive value of the linear current distribution, then I_{o}=ωq_{o}. Then, one can define an effective total inductance L and an effective total capacitance C of the coil through the amount of energy W inside its resonant mode:
where μ_{o }and ∈_{o }are the magnetic permeability and electric permittivity of free space.
With these definitions, the resonant angular frequency and the effective impedance can be given by the formulas ω1/√{square root over (LC)} and Z=√{square root over (LC)} respectively.
Losses in this resonant system consist of ohmic (material absorption) loss inside the wire and radiative loss into free space. One can again define a total absorption resistance R_{abs }from the amount of power absorbed inside the wire and a total radiation resistance R_{rad }from the amount of power radiated due to electric and magneticdipole radiation:
where c=1/√{square root over (μ_{o}∈_{o})} and ζ_{o}=/√{square root over (μ_{o}/∈_{o})} are the light velocity and light impedance in free space, the impedance ζ_{c }is ζ_{c}=1/σδ=√{square root over (μ_{o}ω/2σ)} with σ the conductivity of the conductor and δ the skin depth at the frequency ω,
, p=∫dx r ρ_{l}(x) is the electricdipole moment of the coil and
is the magneticdipole moment of the coil. For the radiation resistance formula Eq. (22), the assumption of operation in the quasistatic regime (h,rλ=2πc/ω) has been used, which is the desired regime of a subwavelength resonance. With these definitions, the absorption and radiation quality factors of the resonance are given by Q_{abs}=Z/R_{abs }and Q_{rad}=Z/R_{rad }respectively.
From Eq. (19)(22) it follows that to determine the resonance parameters one simply needs to know the current distribution j in the resonant coil. Solving Maxwell'"'"'s equations to rigorously find the current distribution of the resonant electromagnetic eigenmode of a conductingwire coil is more involved than, for example, of a standard LC circuit, and we can find no exact solutions in the literature for coils of finite length, making an exact solution difficult. One could in principle write down an elaborate transmissionlinelike model, and solve it by brute force. We instead present a model that is (as described below) in good agreement (˜5%) with experiment. Observing that the finite extent of the conductor forming each coil imposes the boundary condition that the current has to be zero at the ends of the coil, since no current can leave the wire, we assume that the resonant mode of each coil is well approximated by a sinusoidal current profile along the length of the conducting wire. We shall be interested in the lowest mode, so if we denote by x the coordinate along the conductor, such that it runs from −l/2 to +l/2, then the current amplitude profile would have the form I(x)=I_{o }cos(πx/1), where we have assumed that the current does not vary significantly along the wire circumference for a particular x, a valid assumption provided ar . It immediately follows from the continuity equation for charge that the linear charge density profile should be of the form ρ_{l}(x)=ρ_{o }sin(πx/l), and thus q_{o}=∫_{o}^{l/2}dxρ_{o }sin(πx/l)=ρ_{o}l/π. Using these sinusoidal profiles we find the socalled “selfinductance” L_{s }and “selfcapacitance” C_{S }of the coil by computing numerically the integrals Eq. (19) and (20); the associated frequency and effective impedance are ω_{S }and Z_{S }respectively. The “selfresistances” R_{S }are given analytically by Eq. (21) and (22) using
and therefore the associated Q, factors can be calculated.
The results for two examples of resonant coils with subwavelength modes of λ_{s}/r≧70 (i.e. those highly suitable for nearfield coupling and well within the quasistatic limit) are presented in Table 1. Numerical results are shown for the wavelength and absorption, radiation and total loss rates, for the two different cases of subwavelengthcoil resonant modes. Note that, for conducting material, copper (σ=5.998·10̂−7 S/m) was used. It can be seen that expected quality factors at microwave frequencies are Q_{s,abs}≧1000 and Q_{s,rad}≧5000.
Referring to
where
and the retardation factor of u=exp(iωx−x′/c) inside the integral can been ignored in the quasistatic regime Dλ of interest, where each coil is within the near field of the other. With this definition, the coupling factor is given by k=√{square root over (C_{1}C_{2})}/M_{C}+M_{L}/√{square root over (L_{1}L_{2})}.
Therefore, to calculate the coupling rate between two selfresonant coils, again the current profiles are needed and, by using again the assumed sinusoidal current profiles, we compute numerically from Eq. (23) the mutual capacitance M_{C,s }and inductance M_{L,s }between two selfresonant coils at a distance D between their centers, and thus k=1/Q_{κ} is also determined.
Referring to Table 2, relevant parameters are shown for exemplary examples featuring pairs or identical self resonant coils. Numerical results are presented for the average wavelength and loss rates of the two normal modes (individual values not shown), and also the coupling rate and figureofmerit as a function of the coupling distance D, for the two cases of modes presented in Table 1. It can be seen that for medium distances D/r=10−3 the expected couplingtoloss ratios are in the range U˜2−70.
An experimental realization of an example of the above described system for wireless energy transfer consists of two selfresonant coils of the type described above, one of which (the source coil) is coupled inductively to an oscillating circuit, and the second (the device coil) is coupled inductively to a resistive load, as shown schematically in
The parameters for the two identical helical coils built for the experimental validation of the power transfer scheme were h=20 cm, a=3 mm, r=30 cm and N=5.25. Both coils are made of copper. Due to imperfections in the construction, the spacing between loops of the helix is not uniform, and we have encapsulated the uncertainty about their uniformity by attributing a 10% (2 cm) uncertainty to h. The expected resonant frequency given these dimensions is f_{0}=10.56±0.3 MHz, which is about 5% off from the measured resonance at around 9.90 MHz.
The theoretical Q for the loops is estimated to be ˜2500 (assuming perfect copper of resistivity ρ=/1σ=1.7×10^{−8 }Ωm) but the measured value is 950±50. We believe the discrepancy is mostly due to the effect of the layer of poorly conducting copper oxide on the surface of the copper wire, to which the current is confined by the short skin depth (˜20 μm) at this frequency. We have therefore used the experimentally observed Q (and Γ_{1}=Γ_{2}=Γ=ω/(2Q) derived from it) in all subsequent computations.
The coupling coefficient κ can be found experimentally by placing the two selfresonant coils (finetuned, by slightly adjusting h, to the same resonant frequency when isolated) a distance D apart and measuring the splitting in the frequencies of the two resonant modes in the transmission spectrum. According to Eq. (13) derived by coupledmode theory, the splitting in the transmission spectrum should be δ_{P}=2√{square root over (κ^{2}−Γ^{2})}, when κ_{A,B }are kept very small by keeping A and B at a relatively large distance. The comparison between experimental and theoretical results as a function of distance when the two the coils are aligned coaxially is shown in
The powergenerator circuit was a standard Colpitts oscillator coupled inductively to the source coil by means of a single loop of copper wire 25 cm in radius (see
In order to isolate the efficiency of the transfer taking place specifically between the source coil and the load, we measured the current at the midpoint of each of the selfresonant coils with a currentprobe (which was not found to lower the Q of the coils noticeably.) This gave a measurement of the current parameters I_{1 }and I_{2 }defined above. The power dissipated in each coil was then computed from P_{1,2}=ΓLI_{1,2}^{2}, and the efficiency was directly obtained from η=P_{B}/(P_{1}+P_{2}+P_{B}). To ensure that the experimental setup was well described by a twoobject coupledmode theory model, we positioned the device coil such that its direct coupling to the copper loop attached to the Colpitts oscillator was zero. The experimental results are shown in
Using this example, we were able to transmit significant amounts of power using this setup from the source coil to the device coil, fully lighting up a 60 W lightbulb from distances more than 2 m away, for example. As an additional test, we also measured the total power going into the driving circuit. The efficiency of the wireless powertransmission itself was hard to estimate in this way, however, as the efficiency of the Colpitts oscillator itself is not precisely known, although it is expected to be far from 100%. Nevertheless, this gave an overly conservative lower bound on the efficiency. When transmitting 60 W to the load over a distance of 2 m, for example, the power flowing into the driving circuit was 400 W. This yields an overall walltoload efficiency of ˜15%, which is reasonable given the expected ˜40% efficiency for the wireless power transmission at that distance and the low efficiency of the driving circuit.
From the theoretical treatment above, we see that in typical examples it is important that the coils be on resonance for the power transmission to be practical. We found experimentally that the power transmitted to the load dropped sharply as one of the coils was detuned from resonance. For a fractional detuning Δf/f_{o }of a few times the inverse loaded Q, the induced current in the device coil was indistinguishable from noise.
The power transmission was not found to be visibly affected as humans and various everyday objects, such as metallic and wooden furniture, as well as electronic devices large and small, were placed between the two coils, even when they drastically obstructed the line of sight between source and device. External objects were found to have an effect only when they were closer than 10 cm from either one of the coils. While some materials (such as aluminum foil, styrofoam and humans) mostly just shifted the resonant frequency, which could in principle be easily corrected with a feedback circuit of the type described earlier, others (cardboard, wood, and PVC) lowered Q when placed closer than a few centimeters from the coil, thereby lowering the efficiency of the transfer.
This method of power transmission is believed safe for humans. When transmitting 60 W (more than enough to power a laptop computer) across 2 m, we estimated that the magnitude of the magnetic field generated is much weaker than the Earth'"'"'s magnetic field for all distances except for less than about 1 cm away from the wires in the coil, an indication of the safety of the scheme even after longterm use. The power radiated for these parameters was ˜5 W, which is roughly an order of magnitude higher than cell phones but could be drastically reduced, as discussed below.
Although the two coils are currently of identical dimensions, it is possible to make the device coil small enough to fit into portable devices without decreasing the efficiency. One could, for instance, maintain the product of the characteristic sizes of the source and device coils constant.
These experiments demonstrated experimentally a system for power transmission over medium range distances, and found that the experimental results match theory well in multiple independent and mutually consistent tests.
The efficiency of the scheme and the distances covered can be appreciably improved by silverplating the coils, which should increase their Q, or by working with more elaborate geometries for the resonant objects. Nevertheless, the performance characteristics of the system presented here are already at levels where they could be useful in practical applications.
In some examples, one or more of the resonant objects are capacitivelyloaded conducting loops or coils. Referring to
In general, the desired CMT parameters can be found for this system, but again a very complicated solution of Maxwell'"'"'s Equations is required. Instead, we will analyze only a special case, where a reasonable guess for the current distribution can be made. When C_{p}C_{s}>C, then ω≈1/√{square root over (LC_{p})}ω_{s }and Z≈√{square root over (L/C_{p})}Z_{s}, while all the charge is on the plates of the loading capacitor and thus the current distribution is constant along the wire. This allows us now to compute numerically L from Eq. (19). In the case h=0 and N integer, the integral in Eq. (19) can actually be computed analytically, giving the formula L=μ_{o}r[ln(8r/a)−2]N^{2}. Explicit analytical formulas are again available for R from Eq. (21) and (22), since I_{rms}=I_{o}, p≈0 and m=I_{o}Nπr^{2 }(namely only the magneticdipole term is contributing to radiation), so we can determine also Q_{abs}=ωL/R_{abs }and Q_{rad}=ωL/R_{rad}. At the end of the calculations, the validity of the assumption of constant current profile is confirmed by checking that indeed the condition C_{p}C_{S}ωω_{s }is satisfied. To satisfy this condition, one could use a large external capacitance, however, this would usually shift the operational frequency lower than the optimal frequency, which we will determine shortly; instead, in typical examples, one often prefers coils with very small selfcapacitance C_{s }to begin with, which usually holds, for the types of coils under consideration, when N=1, so that the selfcapacitance comes from the charge distribution across the single turn, which is almost always very small, or when N>1 and h2Na, so that the dominant selfcapacitance comes from the charge distribution across adjacent turns, which is small if the separation between adjacent turns is large.
The external loading capacitance C_{p }provides the freedom to tune the resonant frequency (for example by tuning A or d). Then, for the particular simple case h=0, for which we have analytical formulas, the total Q=ωL/(R_{abs}+R_{rad}) becomes highest at the optimal frequency
reaching the value
At lower frequencies it is dominated by ohmic loss and at higher frequencies by radiation. Note, however, that the formulas above are accurate as long as ω_{Q}ω_{s }and, as explained above, this holds almost always when N=1, and is usually less accurate when N>1, since h=0 usually implies a large selfcapacitance. A coil with large h can be used, if the selfcapacitance needs to be reduced compared to the external capacitance, but then the formulas for L and ω_{Q}, Q_{max }are again less accurate. Similar qualitative behavior is expected, but a more complicated theoretical model is needed for making quantitative predictions in that case.
The results of the above analysis for two examples of subwavelength modes of λ/r≧70 (namely highly suitable for nearfield coupling and well within the quasistatic limit) of coils with N=1 and h=0 at the optimal frequency Eq. (24) are presented in Table 3. To confirm the validity of constantcurrent assumption and the resulting analytical formulas, modesolving calculations were also performed using another completely independent method: computational 3D finiteelement frequencydomain (FEFD) simulations (which solve Maxwell'"'"'s Equations in frequency domain exactly apart for spatial discretization) were conducted, in which the boundaries of the conductor were modeled using a complex impedance ζ_{c}=√{square root over (μ_{o}ω/2σ)} boundary condition, valid as long as δ_{c}/δ_{o}1 (<10^{−5 }for copper in the microwave). Table 3 shows Numerical FEFD (and in parentheses analytical) results for the wavelength and absorption, radiation and total loss rates, for two different cases of subwavelengthloop resonant modes. Note that for conducting material copper (σ=5.998·10^{7}S/m) was used. Specific parameters of the plot in
Referring to
which again is more accurate for N_{1}=N_{2}=1.
From Eq. (26) it can be seen that the optimal frequency ω_{u}, where the figureofmerit is maximized to the value U_{max}, is close to the frequency ω_{Q}_{1}_{Q}_{2 }at which Q_{1}Q_{2 }is maximized, since k does not depend much on frequency (at least for the distances D<<λ of interest for which the quasistatic approximation is still valid). Therefore, the optimal frequency ω_{U}≈ω_{Q}_{1}_{Q}_{2 }is mostly independent of the distance D between the two coils and lies between the two frequencies ω_{Q}_{1 }and ω_{Q}_{2 }at which the singlecoil Q_{1 }and Q_{2 }respectively peak. For same coils, this optimal frequency is given by Eq. (24) and then the strongcoupling factor from Eq. (26) becomes
In some examples, one can tune the capacitivelyloaded conducting loops or coils, so that their angular eigenfrequencies are close to ω_{U }within Γ_{U}, which is half the angular frequency width for which U>U_{max}/2.
Referring to Table 4, numerical FEFD and, in parentheses, analytical results based on the above are shown for two systems each composed of a matched pair of the loaded coils described in Table 3. The average wavelength and loss rates are shown along with the coupling rate and coupling to loss ratio figureofmerit U=κ/Γ as a function of the coupling distance D, for the two cases. Note that the average numerical Γ_{rad }shown are slightly different from the singleloop value of
Referring to
Then from the source circuit at resonance (ωL_{s}=1/ωC_{s}):
and from the device circuit at resonance (ωL_{d}=1/ωC_{d}):
0=I_{d}(R_{d}+R_{l})−jωMI_{s}jωMI_{s}=I_{d}(R_{d}+R_{l}) (29)
So by substituting Eq. (29) to Eq. (28) and taking the real part (for timeaveraged power) we get:
where we identified the power delivered by the generator P_{g}=Re{V_{g}*I_{s}/2}, the power lost inside the source P_{s}=I_{s}^{2}R_{s}/2, the power lost inside the device P_{d}=I_{d}R_{d}/2 and the power delivered to the load P_{l}=I_{d}^{2}R_{l}/2. Then, the power transmission efficiency is:
If we now choose the load impedance R_{l }to optimize the efficiency by η_{P}(R_{l})=0, we get the optimal load impedance
and the maximum possible efficiency
To check now the correspondence with the CMT model, note that κ_{l}=R_{l}/2L_{d}, Γ_{d}=R_{d}/2L_{d}, Γ_{s}=R_{s}/2L_{s}, and κ=ωM/2√{square root over (L_{s}L_{d})}, so then U_{l}=κ_{l}/Γ_{d}=R_{l}/R_{d }and U=κ/√{square root over (Γ_{s}Γ_{d})}=ωM/√{square root over (R_{s}R_{d})}. Therefore, the condition Eq. (32) is identical to the condition Eq. (14) and the optimal efficiency Eq. (33) is identical to the general Eq. (15). Indeed, as the CMT analysis predicted, to get a large efficiency, we need to design a system that has a large strongcoupling factor U.
The results above can be used to increase or optimize the performance of a wireless energy transfer system, which employs capacitivelyloaded coils. For example, from the scaling of Eq. (27) with the different system parameters, one sees that to maximize the system figureofmerit U, in some examples, one can:
 Decrease the resistivity of the conducting material. This can be achieved, for example, by using good conductors (such as copper or silver) and/or lowering the temperature. At very low temperatures one could use also superconducting materials to achieve extremely good performance.
 Increase the wire radius a. In typical examples, this action can be limited by physical size considerations. The purpose of this action is mainly to reduce the resistive losses in the wire by increasing the crosssectional area through which the electric current is flowing, so one could alternatively use also a Litz wire or a ribbon instead of a circular wire.
 For fixed desired distance D of energy transfer, increase the radius of the loop r. In typical examples, this action can be limited by physical size considerations, typically especially for the device.
 For fixed desired distance vs. loopsize ratio D/r, decrease the radius of the loop r. In typical examples, this action can be limited by physical size considerations.
 Increase the number of turns N. (Even though Eq. (27) is expected to be less accurate for N>1, qualitatively it still provides a good indication that we expect an improvement in the couplingtoloss ratio with increased N.) In typical examples, this action can be limited by physical size and possible voltage considerations, as will be discussed in following paragraphs.
 Adjust the alignment and orientation between the two coils. The figureofmerit is optimized when both cylindrical coils have exactly the same axis of cylindrical symmetry (namely they are “facing” each other). In some examples, particular mutual coil angles and orientations that lead to zero mutual inductance (such as the orientation where the axes of the two coils are perpendicular and the centers of the two coils are on one of the two axes) should be avoided.
 Finally, note that the height of the coil h is another available design parameter, which can have an impact to the performance similar to that of its radius r, and thus the design rules can be similar.
The above analysis technique can be used to design systems with desired parameters. For example, as listed below, the above described techniques can be used to determine the cross sectional radius a of the wire which one should use when designing as system two same singleturn loops with a given radius in order to achieve a specific performance in terms of U=κ/Γ at a given D/r between them, when the material is copper (σ=5.998·10^{7}S/m):
D/r=5, U≧10, r=30 cm=a≧9 mm
D/r=5, U≧10, r=5 cma≧3.7 mm
D/r=5, U≧20, r=30 cma≧20 mm
D/r=5, U≧20, r=5 cma≧8.3 mm
D/r=10, U≧1, r=30 cma≧7 mm
D/r=10, U≧1, r=5 cma≧2.8 mm
D/r=10, U≧3, r=30 cma≧25 mm
D/r=10, U≧3, r=5 cma≧10 mm
Similar analysis can be done for the case of two dissimilar loops. For example, in some examples, the device under consideration is very specific (e.g. a laptop or a cell phone), so the dimensions of the device object (r_{d}, h_{d}, a_{d}, N_{d}) are very restricted. However, in some such examples, the restrictions on the source object (r_{s}, h_{s}, a_{s}, N_{s}) are much less, since the source can, for example, be placed under the floor or on the ceiling. In such cases, the desired distance is often well defined, based on the application (e.g. D˜1 m for charging a laptop on a table wirelessly from the floor). Listed below are examples (simplified to the case N_{s}=N_{d}=1 and h_{s}=h_{d}=0) of how one can vary the dimensions of the source object to achieve the desired system performance in terms of U_{sd}=κ/√{square root over (Γ_{s}Γ_{d})}, when the material is again copper (σ=5.998·10^{7}S/m):
D=1.5 m, U_{sd}≧15, r_{d}=30 cm, a_{d}=6 mmr_{s}=1.158 m, a_{s}≧5 mm
D=1.5 m, U_{sd}≧30, r_{d}=30 cm, a_{d}=6 mmr_{s}=1.15 m, a_{s}≧33 mm
D=1.5 m, U_{sd}≧1, r_{d}=5 cm, a_{d}=4 mmr_{s}=1.119 m, a_{s}≧7 mm
D=1.5 m, U_{sd}≧2, r_{d}=5 cm, a_{d}=4 mmr_{s}=1.119 m, a_{s}≧52 mm
D=2 m, U_{sd}≧10, r_{d}=30 cm, a_{d}=6 mmr_{s}=1.518 m, a_{s}≧7 mm
D=2 m, U_{sd}≧20, r_{d}=30 cm, a_{d}=6 mmr_{s}=1.514 m, a_{s}≧50 mm
D=2 m, U_{sd}≧0.5, r_{d}=5 cm, a_{d}=4 mmr_{s}=1.491 m, a_{s}≧5 mm
D=2 m, U_{sd}≧1, r_{d}=5 cm, a_{d}=4 mmr_{s}=1.491 m, a_{s}≧36 mm
As described below, in some examples, the quality factor Q of the resonant objects is limited from external perturbations and thus varying the coil parameters cannot lead to improvement in Q. In such cases, one can opt to increase the strongcoupling factor U by increasing the coupling factor k. The coupling does not depend on the frequency and the number of turns. Therefore, in some examples, one can:
 Increase the wire radii a_{1 }and a_{2}. In typical examples, this action can be limited by physical size considerations.
 For fixed desired distance D of energy transfer, increase the radii of the coils r_{1 }and r_{2}. In typical examples, this action can be limited by physical size considerations, typically especially for the device.
 For fixed desired distance vs. coilsizes ratio D/√{square root over (r_{1}r_{2})}, only the weak (logarithmic) dependence of the inductance remains, which suggests that one should decrease the radii of the coils r_{1 }and r_{2}. In typical examples, this action can be limited by physical size considerations.
 Adjust the alignment and orientation between the two coils. In typical examples, the coupling is optimized when both cylindrical coils have exactly the same axis of cylindrical symmetry (namely they are “facing” each other). Particular mutual coil angles and orientations that lead to zero mutual inductance (such as the orientation where the axes of the two coils are perpendicular and the centers of the two coils are on one of the two axes) should obviously be avoided.
 Finally, note that the heights of the coils h_{1 }and h_{2 }are other available design parameters, which can have an impact to the coupling similar to that of their radii r_{1 }and r_{2}, and thus the design rules can be similar.
Further practical considerations apart from efficiency, e.g. physical size limitations, will be discussed in detail below.
In many cases, the dimensions of the resonant objects will be set by the particular application at hand. For example, when this application is powering a laptop or a cellphone, the device resonant object cannot have dimensions larger than those of the laptop or cellphone respectively. In particular, for a system of two loops of specified dimensions, in terms of loop radii r_{s,d }and wire radii a_{s,d}, the independent parameters left to adjust for the system optimization are: the number of turns N_{s,d}, the frequency f, the powerload consumption rate κ_{l}=R_{l}/2L_{d }and the powergenerator feeding rate κ_{g}=R_{g}/2L_{3}, where R_{g }is the internal (characteristic) impedance of the generator.
In general, in various examples, the primary dependent variable that one wants to increase or optimize is the overall efficiency η. However, other important variables need to be taken into consideration upon system design. For example, in examples featuring capacitivelyloaded coils, the design can be constrained by, for example, the currents flowing inside the wires I_{s,d }and the voltages across the capacitors V_{s,d}. These limitations can be important because for ˜Watt power applications the values for these parameters can be too large for the wires or the capacitors respectively to handle. Furthermore, the total loaded (by the load) quality factor of the device Q_{d[l]}=ω/2(Γ_{d}+Γ_{l})=ωL_{d}/(R_{d}+R_{l}) and the total loaded (by the generator) quality factor of the source Q_{s[g]}=ω/2(Γ_{s}+Γ_{g})=ωL_{s}/(R_{s}+R_{g}) are quantities that should be preferably small, because to match the source and device resonant frequencies to within their Q'"'"'s, when those are very large, can be challenging experimentally and more sensitive to slight variations. Lastly, the radiated powers P_{s,rad }and P_{d,rad }should be minimized for concerns about farfield interference and safety, even though, in general, for a magnetic, nonradiative scheme they are already typically small. In the following, we examine then the effects of each one of the independent variables on the dependent ones.
We define a new variable wp to express the powerload consumption rate for some particular value of U through U_{l}=κ_{l}/Γ_{d}=√{square root over (1+ωp·U^{2})}. Then, in some examples, values which impact the choice of this rate are: U_{l}=1ωp=0 to minimize the required energy stored in the source (and therefore I_{s }and V_{s}), U_{l}=√{square root over (1+U^{2})}>1wp=1 to maximize the efficiency, as seen earlier, or U_{l}1ωp1 to decrease the required energy stored in the device (and therefore I_{d }and V_{d}) and to decrease or minimize Q_{d[l]}. Similar is the impact of the choice of the powergenerator feeding rate U_{g}=κ_{g}/Γ_{s}, with the roles of the source/device and generator/load reversed.
In some examples, increasing N_{s }and N_{d }increases Q_{s }and Q_{d}, and thus U and the efficiency significantly, as seen before. It also decreases the currents I_{s }and I_{d}, because the inductance of the loops increases, and thus the energy W_{s,d}=L_{s,d}I_{s,d}^{2}/2 required for given output power P_{l }can be achieved with smaller currents. However, in some examples, increasing N_{d }and thus Q_{d }can increase Q_{d[l]}, P_{d,rad }and the voltage across the device capacitance V_{d}. Similar can be the impact of increasing N_{s }on Q_{s[g]}, P_{s,rad }and V_{s}. As a conclusion, in some examples, the number of turns N_{s }and N_{d }should be chosen large enough (for high efficiency) but such that they allow for reasonable voltages, loaded Q'"'"'s and/or powers radiated.
With respect to the resonant frequency, again, there is an optimal one for efficiency. Close to that optimal frequency Q_{d[l]} and/or Q_{s[g]} can be approximately maximum. In some examples, for lower frequencies the currents typically get larger but the voltages and radiated powers get smaller. In some examples, one should pick either the frequency that maximizes the efficiency or somewhat lower.
One way to decide on an operating regime for the system is based on a graphical method. Consider two loops of r_{s}=25 cm, r_{d}=15 cm, h_{s}=h_{d}=0, a_{s}=a_{d}=3 mm and distance D=2 m between them. In
Finally, one could additionally optimize for the source dimensions, since usually only the device dimensions are limited, as discussed earlier. Namely, one can add r_{s }and a_{s }in the set of independent variables and optimize with respect to these too for all the dependent variables of the problem (we saw how to do this only for efficiency earlier). Such an optimization would lead to improved results.
In this description, we propose that, if one ensures operation in the stronglycoupled regime at midrange distances, at least mediumpower transmission (˜W) at midrange distances with high efficiency is possible.
A straight conducting rod of length 2 h and crosssectional radius a has distributed capacitance and distributed inductance, and therefore it supports a resonant mode of angular frequency ω. Using the same procedure as in the case of selfresonant coils, one can define an effective total inductance L and an effective total capacitance C of the rod through formulas Eqs. (19) and (20). With these definitions, the resonant angular frequency and the effective impedance are given again by the common formulas ω=1/√{square root over (LC)} and Z=√{square root over (L/C)} respectively. To calculate the total inductance and capacitance, one can assume again a sinusoidal current profile along the length of the conducting wire. When interested in the lowest mode, if we denote by x the coordinate along the conductor, such that it runs from −h to +h, then the current amplitude profile would have the form I(x)=I_{o }cos(πx/2 h), since it has to be zero at the open ends of the rod. This is the wellknown halfwavelength electric dipole resonant mode.
In some examples, one or more of the resonant objects are inductivelyloaded conducting rods. Referring to
In general, the desired CMT parameters can be found for this system, but again a very complicated solution of Maxwell'"'"'s Equations is generally required. In a special case, a reasonable estimate for the current distribution can be made. When L_{c}L_{s}>L, then ω≈1/√{square root over (L_{c}C)}ω_{s }and Z≈√{square root over (L_{c}/C)}Z_{s}, while the current distribution is triangular along the rod (with maximum at the centerloading inductor and zero at the ends) and thus the charge distribution is positive constant on one half of the rod and equally negative constant on the other side of the rod. This allows us to compute numerically C from Eq. (20). In this case, the integral in Eq. (20) can actually be computed analytically, giving the formula 1/C=1/(π∈_{o}h)[ln(h/a)−1]. Explicit analytical formulas are again available for R from Eq. (21) and (22), since I_{rms}=I_{o}, p=q_{o}h and m=0 (namely only the electricdipole term is contributing to radiation), so we can determine also Q_{abs}=1/ωCR_{abs }and Q_{rad}=1/ωCR_{rad}. At the end of the calculations, the validity of the assumption of triangular current profile is confirmed by checking that indeed the condition L_{c}L_{s}ωω_{s }is satisfied. This condition is relatively easily satisfied, since typically a conducting rod has very small selfinductance L_{s }to begin with.
Another important loss factor in this case is the resistive loss inside the coil of the external loading inductor L_{c }and it depends on the particular design of the inductor. In some examples, the inductor is made of a Brooks coil, which is the coil geometry which, for fixed wire length, demonstrates the highest inductance and thus quality factor. The Brooks coil geometry has N_{Bc }turns of conducting wire of crosssectional radius a_{Bc }wrapped around a cylindrically symmetric coil former, which forms a coil with a square crosssection of side r_{Bc}, where the inner side of the square is also at radius r_{Bc }(and thus the outer side of the square is at radius 2r_{Bc}), therefore N_{BC}≈(r_{Bc}/2a_{Bc})^{2}. The inductance of the coil is then L_{c}=2.0285μ_{o}r_{Bc}N_{Bc}^{2}≈2.0285μ_{o}r_{Bc}^{5}/8a_{Bc}^{4 }and its resistance
where the total wire length is l_{Bc}≈2π(3r_{Bc}/2)N_{Bc}≈3πr_{Bc}^{3}/4a_{Bc}^{2}, and we have used an approximate squareroot law for the transition of the resistance from the dc to the ac limit as the skin depth varies with frequency.
The external loading inductance L_{c }provides the freedom to tune the resonant frequency. For example, for a Brooks coil with a fixed size r_{Bc}, the resonant frequency can be reduced by increasing the number of turns N_{Bc }by decreasing the wire crosssectional radius a_{Bc}. Then the desired resonant angular frequency ω=1/√{square root over (L_{c}C)} is achieved for a_{Bc}≈(2.0285μ_{o}r_{Bc}^{5}ω^{2}C)^{1/4 }and the resulting coil quality factor is Q_{c}≈0.169μ_{o}σr_{Bc}^{2}ω/√{square root over (1+ω^{2}μ_{o}σ√{square root over (2.0285μ_{o}(r_{Bc}/4)^{5}C )})}. Then, for the particular simple case L_{c}L_{s}, for which we have analytical formulas, the total Q=1/ωC(R_{c}+R_{abs}+R_{rad}) becomes highest at some optimal frequency ω_{Q}, reaching the value Q_{max}, both determined by the loadinginductor specific design. For example, for the Brookscoil procedure described above, at the optimal frequency) Q_{max}≈Q_{c}≈0.8 (μ_{o}σ^{2}r_{Bc}^{3}/C)^{1/4}. At lower frequencies it is dominated by ohmic loss inside the inductor coil and at higher frequencies by radiation. Note, again, that the above formulas are accurate as long as ω_{Q}ω_{s }and, as explained above, this is easy to design for by using a large inductance.
The results of the above analysis for two examples, using Brooks coils, of subwavelength modes of λ/h≧200 (namely highly suitable for nearfield coupling and well within the quasistatic limit) at the optimal frequency ω_{Q }are presented in Table 5.
Table 5 shows in parentheses (for similarity to previous tables) analytical results for the wavelength and absorption, radiation and total loss rates, for two different cases of subwavelengthloop resonant modes. Note that for conducting material copper (σ=5.998·10^{7}S/m) was used. The results show that, in some examples, the optimal frequency is in the lowMHz microwave range and the expected quality factors are Q_{abs}≧1000 and Q_{rad}≧100000.
In some examples, energy is transferred between two inductivelyloaded rods. For the rate of energy transfer between two inductivelyloaded rods 1 and 2 at distance D between their centers, the mutual capacitance M_{C }can be evaluated numerically from Eq. (23) by using triangular current distributions in the case ω<<ω_{s}. In this case, the coupling is only electric and again we have an analytical formula, which, in the quasistatic limit h<<D<<λ and for the relative orientation such that the two rods are aligned on the same axis, is 1/M_{C}1/2π∈_{o}·(h_{1}h_{2})^{2}/D^{3}, which means that k∝(√{square root over (h_{1}h_{2})}/D)^{3 }is independent of the frequency ω. One can then get the resultant strongcoupling factor U.
It can be seen that the optimal frequency ω_{U}, where the figureofmerit is maximized to the value U_{max}, is close to the frequency ω_{Q}_{1}_{Q}_{2}, where Q_{1}Q_{2 }is maximized, since k does not depend much on frequency (at least for the distances D<<λ of interest for which the quasistatic approximation is still valid). Therefore, the optimal frequency ω_{U}≈ω_{Q}_{1}_{Q}_{2 }is mostly independent of the distance D between the two rods and lies between the two frequencies ω_{Q}_{1 }and ω_{Q}_{2 }at which the singlerod Q_{1 }and Q_{2 }respectively peak. In some typical examples, one can tune the inductivelyloaded conducting rods, so that their angular eigenfrequencies are close to ω_{U }within Γ_{U}, which is half the angular frequency width for which U>U_{max}/2.
Referring to Table 6, in parentheses (for similarity to previous tables) analytical results based on the above are shown for two systems each composed of a matched pair of the loaded rods described in Table 5. The average wavelength and loss rates are shown along with the coupling rate and coupling to loss ratio figureofmerit U=κ/Γ as a function of the coupling distance D, for the two cases. Note that for Γ_{rad }the singlerod value is used. Again we chose L_{c}L_{s }to make the triangularcurrent assumption a good one and computed M_{C }numerically from Eq. (23). The results show that for medium distances D/h=10−3 the expected couplingtoloss ratios are in the range U˜0.5−100.
In some examples, one or more of the resonant objects are dielectric objects, such as disks. Consider a two dimensional dielectric disk object, as shown in
The results for two TEpolarized dielectricdisk subwavelength modes of λ/r≧10 are presented in Table 7. Table 7 shows numerical FDFD (and in parentheses analytical SV) results for the wavelength and absorption, radiation and total loss rates, for two different cases of subwavelengthdisk resonant modes. Note that diskmaterial losstangent Im{∈}/Re{∈}=10^{−4 }was used. (The specific parameters corresponding to the plot in
The required values of s, shown in Table 7, might at first seem unrealistically large. However, not only are there in the microwave regime (appropriate for approximately meterrange coupling applications) many materials that have both reasonably high enough dielectric constants and low losses (e.g. Titania, Barium tetratitanate, Lithium tantalite etc.), but also ∈ could signify instead the effective index of other known subwavelength surfacewave systems, such as surface modes on surfaces of metallic materials or plasmonic (metallike, negative∈) materials or metallodielectric photonic crystals or plasmonodielectric photonic crystals.
To calculate now the achievable rate of energy transfer between two disks 1 and 2, as shown in
κ=ω_{1}/2·∫d^{3}r∈_{2}(r)E_{2}*(r)E_{1}(r)/∫d^{3}r∈(r)E_{1}(r)^{2},
where ∈_{j}(r) and ∈(r) are the dielectric functions that describe only the disk j (minus the constant ∈_{o }background) and the whole space respectively. Then, for medium distances D/r=10−3 and for nonradiative coupling such that D<2r_{C}, where r_{C}=mλ/2π is the radius of the radiation caustic, the two methods agree very well, and we finally find, as shown in Table 8, strongcoupling factors in the range U˜150. Thus, for the analyzed examples, the achieved figureofmerit values are large enough to be useful for typical applications, as discussed below.
Note that even though particular examples are presented and analyzed above as examples of systems that use resonant electromagnetic coupling for wireless energy transfer, those of selfresonant conducting coils, capacitivelyloaded resonant conducting coils, inductivelyloaded resonant conducting rods and resonant dielectric disks, any system that supports an electromagnetic mode with its electromagnetic energy extending much further than its size can be used for transferring energy. For example, there can be many abstract geometries with distributed capacitances and inductances that support the desired kind of resonances. In some examples, the resonant structure can be a dielectric sphere. In any one of these geometries, one can choose certain parameters to increase and/or optimize U or, if the Q'"'"'s are limited by external factors, to increase and/or optimize for k or, if other system performance parameters are of importance, to optimize those.
The two objects in an energytransfer system generate radiation, which can sometimes be a significant part of the intrinsic losses, and can interfere in the far field. In the previous Sections, we analyzed systems, where this interference phenomenon was not in effect. In this description, we will repeat the analysis, including the interference effects and will show how it can be used to further enhance the power transmission efficiency and/or the radiated power.
The coupledmode equations of Eqs. (1) fail to predict such an interference phenomenon. In fact, the inability to predict interference phenomena has often been considered inherent to coupledmode theory (CMT). However, we show here that making only a simple extension to this model, it can actually very successfully predict such interference. The root of the problem stems from the fact that the coupling coefficients were tacitly assumed to be real. This is usually the case when dealing with proper (real) eigenmodes of a Hermitian (lossless) operator. However, this assumption fails when losses are included, as is for example the current case dealing with generally nonproper (leaky, radiative) eigenmodes of a nonHermitian (lossy) operator. In this case, the couplingmatrix elements will generally be complex and their imaginary parts will be shown to be directly related to farfield radiation interference.
Imagine a system of many resonators in proximity to each other. When their resonances have close enough frequencies compared to their coupling rates, the CMT assumption is that the totalsystem field ψ is approximately determined only by these resonances as the superposition ψ(t)=Σ_{n}a_{n}(t)ψ_{n}, where ψ_{n }is the eigenfield of the resonance n normalized to unity energy, and a_{n }is the field amplitude inside it, which corresponds, due to the normalization, to a_{n}^{2 }stored energy. The fundamental CoupledMode Equations (CME) of CMT are then those of the evolution of the vector a={a_{n}}
where the frequency matrix
We restate here one of the many perturbative formulations of CMT in a system of ElectroMagnetic (EM) resonators: Let μ=μ_{o }and ∈=∈_{o}+Σ_{n}∈_{n }be the magneticpermeability and dielectricpermittivity functions of space that describe the whole system, where ∈_{n }is the permittivity of only the dielectric, reciprocal and generally anisotropic object n of volume V_{n}, in excess to the constant μ_{o}, ∈_{o }background space. Each resonator n, when alone in the background space, supports a resonant eigenmode of complex frequency Ω_{n}=ω_{n}−iΓ_{n }and field profiles ψ_{n}=[E_{n}, H_{n}] normalized to unity energy, satisfying the equations ∇×E_{n}=iΩ_{n}μ_{o}H_{n }and ∇×H_{n}=−iΩ_{n}(∈_{o}+∈_{n})E_{n}, and the boundary condition {circumflex over (n)}×E_{n}=0 on the potential metallic surface S_{n }of object n. The whole system fields ψ=[E,H] satisfy the equations
and the boundary condition {circumflex over (n)}×E=0 on S=Σ_{n}S_{n}. Then, start by expanding ∇·(E×H_{n}^{−}−E_{n}^{−}×H) and integrating over all space, apply the CMT superposition assumption, and finally use the PT argument that, when the couplingrates between the resonators are small compared to their frequencies, within a sum only terms of lowest order in this small perturbation need to be kept. The result is the CME of Eq. (34), with
and where ψ_{n}=[E_{n}^{−}, H_{n}^{−}] satisfy the timereversed equations (where Ω_{n}→−Ω_{n}). The choice of these fields in the analysis rather than ψ_{n}*=[E_{n}*, H_{n}*] allows to treat also lossy (due to absorption and/or radiation) but reciprocal systems (so
where J_{m }includes both the volumepolarization currents J_{p,m}=−iΩ_{m}∈_{m}E_{m }in V_{m }and the surface electric currents J_{s,m}={circumflex over (n)}×H_{m }on S_{m}, while the diagonal terms are higherorder small and can often lead to anomalous couplinginduced frequency shifts. The term of Eq. (37) can generally be complex κ_{nm}=κ_{nm}+1Λ_{nm }and, even though the physical interpretation of its real part is well understood, as describing the coupling between the resonators, it is not so the case for its imaginary part
where integration by parts was used for the ∇φ_{n }term and the continuity equation ∇·J=iωρ, with ρ being the volume charge density.
Towards understanding this term, let us consider two resonators 1, 2 and evaluate from Eqs. (34) the total power lost from the system
Clearly, the term involving an interaction between the two objects should not relate to material absorption, since this is a very localized process inside each object. We therefore split this lost power into absorbed and radiated in the following way
P_{abs}=2Γ_{1,abs}a_{1}^{2}+2Γ_{2,abs}a_{2}^{2} (40)
P_{rad}=2Γ_{1,rad}a_{1}^{2}+2Γ_{2,rad}a_{2}^{2}+4∇_{12}Re{a_{1}*a_{2}} (41)
so ∇_{12 }is associated with the radiation from the twoobject system. However, we have a tool to compute this radiated power separately: Antenna Theory (AT).
Let ζ_{o}=ζ_{o}=√{square root over (μ_{o}/∈_{o })} and c_{o}=1/√{square root over (μ_{o}∈_{o})} be the background impedance and lightvelocity, and f=(g,f)=∫_{V}dv′J^{v (r′)e}^{−ik·r}′ the moment of the currentdistribution 4vector Jv=(c_{o}ρ, J) of an electromagnetic resonator, where unityenergy normalization is again assumed for J^{v }and g={circumflex over (k)}·f, as can be shown using the continuity equation and integration by parts. The power radiated from one EM resonator is:
where f^{2}=f*·f≡f^{2}−g^{2}. The power radiated from an ‘array’ of two resonators 1 and 2, at vectordistance D between their centers, is given by:
where f_{1}*·f_{2}=f_{1}*−f_{2}−g_{1}*·g_{2}. Thus, by comparing Eqs. (41) and (43), using Eq. (42),
namely ∇_{12 }is exactly the interference term in AT. By substituting for the 4vector currentmoments and making the change of variables r_{1}=r_{l}′, r_{2}=r_{2}′+D,
where we evaluated the integral over all angles of k with r_{2}−r_{1}.
Note now that Eqs. (38) and (45) will become identical, if we can take the currents J_{1,2}^{v }to be real. This is indeed the case for eigenmodes, where the field solution in bounded regions (such as those where the currents are flowing) is always stationary (in contrast to the leaky part of the eigenmode, which is radiative) and for high enough Q it can be chosen so that it is approximately real in the entire bounded region. Therefore, from either Eq. (38) or (45) we can write
and from Eq. (44), using Eq. (42), we can define the interference factor
We have shown that, in the highQ limit, both PT and AT give the same expression for the imaginary part ∇_{nm }of the coupling coefficient, which thus physically describes within CMT the effects of farfield radiation interference. Again, this phenomenon was so far not considered to be predictable from CMT.
Physically, one can expect that farfield radiation interference can in principle be engineered to be destructive, resulting in reduced overall radiation losses for the twoobject system and thus in enhanced system efficiency. In this section, we show that, indeed, in the presence of farfield interference, energy transfer can be more efficient and with less radiated power than what our previous model predicts.
Once more, we will treat the same temporal energytransfer schemes as before (finiteamount and finiterate), so that a direct comparison can be made.
Considering again the source and device objects 1,2 to include the interference effects, the same CMT equations as in Eq. (1) can be used, but with the substitutions κ_{nm}→K_{nm}=κ_{nm}+i∇_{nm}; n,m=1,2. The real parts κ_{11,22 }can describe, as before, the shift in each object'"'"'s resonance frequency due to the presence of the other; the imaginary parts ∇_{11,22 }can describe the change in the losses of each object due to the presence of the other (due to absorption in it or scattering from it, in which latter case losses could be either increased or decreased); both of these are secondorder effects and, for the purposes of our mathematical analysis, can again be absorbed into the complex eigenfrequencies by setting ω_{1,2}→ω_{1,2}+κ_{11,22 }and Γ_{1,2}→Γ_{1,2}→∇_{11,22}. The real parts κ_{12,21 }can denote, as before, the coupling coefficients; the imaginary parts ∇_{12,21 }can describe the farfield interference, as was shown in Section 3; again, from reciprocity K_{12}=K_{21}≡K≡κ+i∇ (note that for a Hermitian problem, the additional requirement K_{12}=K_{11}* would impose K to be real, which makes sense, since without losses there cannot be any radiation interference).
Substituting κ→κ+i∇ into Eq. (2), we can find the normal modes of the system including interference effects. Note that, when the two objects are at exact resonance ω_{1}=ω_{2}≡ω_{o }and Γ_{1}═Γ_{2}≡Γ_{o}, the normal modes are found to be
Ω=(ω_{0}+κ)−i(Γ_{0}−∇) and Ω_{−}=(ω_{0}−κ)−(Γ_{0}+∇), (48)
which is exactly the typical case for respectively the odd and even normal modes of a system of two coupled objects, where for the even mode the objects'"'"' fieldamplitudes have the same sign and thus the frequency is lowered and the radiative farfields interfere constructively so loss is increased, while for the odd mode the situation is the opposite. This is another confirmation for the fact that the coefficient A can describe the farfield interference phenomenon under examination.
To treat now again the problem of energy transfer to object 2 from 1, but in the presence of radiative interference, again simply substitute κ→κ+i∇ into Eq. (3). Note that, at exact resonance ω_{1}=ω_{2 }and, in the special case Γ_{1}=Γ_{2}≡Γ_{o}, we can just substitute into Eq. (4) U→U+iV, where U≡κ/Γ_{o }and V≡∇/Γ_{o}, and then, with T≡Γ_{o}t, the evolution of the device fieldamplitude becomes
Now the efficiency η_{E}≡a_{2}(t)^{2}/a_{1}(0)^{2 }can be optimized for the normalized time T* which is the solution of the transcendental equation
Re{(U+iV)·cot [(U+iV)T*]}=1 (50)
and the resulting optimal energytransfer efficiency depends only on U, V and is depicted in
Similarly, to treat the problem of continuous powering of object 2 by 1, in the presence of radiative interference, simply substitute U→U+iV into the equations of Section 1.2, where V≡∇√{square root over (Γ_{1}Γ_{2})} we call the stronginterference factor and quantifies the degree of farfield interference that the system experiences compared to loss. In practice, the parameters D_{1,2}, U_{1,2 }can be designed (engineered), since one can adjust the resonant frequencies ω_{1,2 }(compared to the desired operating frequency w) and the generator/load supply/drain rates κ_{1,2}. Their choice can target the optimization of some system performancecharacteristic of interest.
In some examples, a goal can be to maximize the power transmission (efficiency) η_{p}≡S_{21}^{2 }of the system. The symmetry upon interchanging 12 is then preserved and, using Eq. (11), the fieldamplitude transmission coefficient becomes
and from η_{P}′(D_{o})=0 we get that, for fixed U, V and U_{o}, the efficiency can be maximized for the symmetric detuning
where a≡[U^{2}−V^{2}−(1+U_{o})^{2}]/3, β≡UV(1+U_{o}), θ≡tan^{−1}√{square root over (a^{3}/β^{2}−1)} and U^{2/3}−V^{2/3}>(1+U_{o})^{2/3}a^{3}−β^{2}>0a>0. Note that, in the first case, the two peaks of the transmission curve are not equal for V>0, but the one at higher frequencies (v=0 positive detuning) corresponding to the odd system normal mode is higher, as should be expected, since the odd mode is the one that radiates less. Finally, by substituting D_{o }into η_{P }from Eq. (52), then from η_{P}′(U_{o})=0 we get that, for fixed U and V, the efficiency can be maximized for
U_{o}*=√{square root over ((1+U^{2})(1−V^{2}))}{square root over ((1+U^{2})(1−V^{2}))} and D_{o}*=UV. (53)
The dependence of the efficiency on D, for different U_{o }(including the new ‘criticalcoupling’ condition) are shown in
which depends only on U, V and is depicted in
In some examples, a goal can be to minimize the power reflection at the side of the generator S_{11}^{2 }and the load S_{22}^{2}. The symmetry upon interchanging 12 is again preserved and, using then Eq. (17), one would require the ‘impedance matching’ condition
(1−iD_{0})^{2}−U_{0}^{2}+(U+iV)^{2}=0 (55)
from which again we easily find that the values of D_{o }and U_{o }that cancel all reflections are exactly those in Eqs. (53).
In some examples, it can be of interest to minimize the power radiated from the system, since e.g. it can be a cause of interference to other communication systems, while still maintaining good efficiency. In some examples, the two objects can be the same, and then, using Eq. (41), we find
Then, to achieve our goal, we maximize η_{P}/η_{rad }and find that this can be achieved for
U_{0}**=√{square root over (1+U^{2}−V_{rad}^{2}U^{2}+V^{2}−2VV_{rad})} and D_{0}**=UV_{rad}, (57)
where V_{rad}≡∇√{square root over (Γ_{1,rad}Γ_{2,rad})}, as defined in Eq. (47), we call the interference factor and quantifies the degree of farfield interference that the system experiences compared to the radiative loss, thus
and V=V_{rad }when all loss is radiative, in which case Eq. (57) reduces to Eq. (53).
In this description, we suggest that, for any temporal energytransfer scheme and given some achieved couplingtoloss ratio, the efficiency can be enhanced and the radiation can be suppressed by shifting the operational frequency away from exact resonance with each object'"'"'s eigenfrequency and closer to the frequency of the odd normalmode, which suffers less radiation due to destructive farfield interference. It is the parameters
that are the figuresofmerit for any system under consideration for wireless energytransfer, along with the distance over which largeU, V can be achieved. Clearly, also V can be a decreasing function of distance, since two sources of radiation distant by more than a few wavelengths do not interfere substantially. It is important also to keep in mind that the magnitude of V depends on the degree to which radiation dominates the objects'"'"' losses, since it is only these radiative losses that can contribute to interference, as expressed from V_{rad}≧V.
To achieve a large stronginterference factor V, in some examples, the energytransfer application preferably uses again subwavelength resonances, because, for a given sourcedevice distance, the interference factor V_{rad }will increase as frequency decreases, since naturally the odd mode of two coupled objects, distant much closer than a wavelength, will not radiate at all.
To achieve a large stronginterference factor V, in some examples, the energytransfer application preferably uses resonant modes of high factors Q/Q_{rad}. This condition can be satisfied by designing resonant modes where the dominant loss mechanism is radiation. As frequency decreases, radiation losses always decrease and typically systems are limited by absorption losses, as discussed earlier, so Q/Q_{rad }decreases; thus, the advantage of interference can be insignificant at some point compared to the deterioration of absorptionQ.
Therefore, V will be maximized at some frequency ω_{V}, dependent on the sourcedevice distance, and this optimal frequency will typically be different than ω_{U}, the optimal frequency for U. As seen above, the problem of maximizing the energytransfer efficiency can require a modified treatment in the presence of interference. The choice of eigenfrequency for the source and device objects as ω_{U}, where U is maximum, can not be a good one anymore, but also V needs to be considered. The optimization of efficiency occurs then at a frequency ω_{η} between ω_{U }and ω_{V }and is a combined problem, which will be demonstrated below for few examples of electromagnetic systems.
Moreover, note that, at some fixed distance between the source and device objects, the figures U, V can not be maximized for the same set of system parameters; in that case, these parameters could be chosen so that the efficiency of Eq. (54) is maximized.
In the following section, we calculate a magnitude of efficiency improvement and radiation reduction for realistic systems at midrange distances between two objects, by employing this frequency detuning and by doing a joint optimization for U, V.
In the case of two objects 1, 2 supporting radiative electromagnetic resonant modes of the same eigenfrequency ω_{1}=ω_{2}≡ω_{o }and placed at distance D between their arbitrarilychosen centers, so that they couple in the near field and interfere in the far field, the interference factor V_{rad }is predicted from antenna theory (AT) to be that in Eq. (47).
We have also seen above how to compute the resonance quality factors Q and Q_{rad}, for some example structures, and thus we can compute the factor Q/Q_{rad}.
We will demonstrate the efficiency enhancement and the radiation suppression due to interference for the two examples of capacitivelyloaded conducting loops and dielectric disks. The degree of improvement will be shown to depend on the nature of the system.
Consider two loops 1, 2 of radius r with N turns of conducting wire with circular crosssection of radius a at distance D, as shown in
Their coupling factor is shown in
We compute the interference parameter between two coupled loops at distance D, using the AT analysis Eq. (47), leading to
Consider two loops 1, 2 of radius r with N turns of conducting wire with circular crosssection of radius a at distance D, as shown in
for the orientation of optimal coupling, where one loop is above the other. Their interference factor is shown in
At a fixed resonant frequency, in some examples, the factor Q/Q_{rad }can be increased by increasing the radii r of the loops. In some examples, the factor Q/Q_{rad }can be increased by increasing the number N of turns of the loops. In some examples, the factor Q/Q_{rad }can be increased by increasing the radius a of the conducting wire of the loops or by using Litz wire or a ribbon to reduce the absorption losses and thus make radiation more dominant loss mechanism.
We also plot in
In
(i) (solid lines) including interference effects and detuning the driving frequency from the resonant frequency by D_{o}=UV from Eq. (53) to maximize the powertransmission efficiency and similarly using U_{o }from Eq. (53), which thus implies optimal efficiency as in Eq. (54).
(ii) (dashdotted lines) including interference effects and detuning the driving frequency from the resonant frequency by D_{o}=UV_{rad }from Eq. (57) to maximize the ratio of power transmitted over power radiated and similarly using U_{o }from Eq. (57).
(iii) (dashed lines) including interference effects but not detuning the driving frequency from the resonant frequency and using U_{o }from Eq. (14), as one would do to maximize efficiency in the absence of interference.
(iv) (dotted lines) truly in the absence of interference effects and thus maximizing efficiency by not detuning the driving frequency from the resonant frequency and using U_{o }from Eq. (14), which thus implies efficiency as in Eq. (15).
In
It can be seen from
If f^{η} is the eigenfrequency, at which the efficiency of case (i) (solid) is optimized, then, in some examples, the resonant eigenfrequency can be designed to be larger than f_{η}, namely in a regime where the system is more radiation dominated. In this description, we suggest that at such eigenfrequencies, there can be a significant improvement in efficiency by utilizing the destructive farfield interference effects and driving the system at a frequency close to the odd normal mode. This can be seen again from
In general, one would tend to design a system resonant at the frequency f_{U }where the strongcoupling factor U is maximal. However, as suggested above, in the presence of interference,
In
In some examples, the resonant eigenfrequency can be designed to be larger than f_{η}, namely in a regime where the system is more radiation dominated. In this description, we suggest that at such eigenfrequencies, there can be a significant suppression in radiation by utilizing the destructive farfield interference effects and driving the system at a frequency close to the odd normal mode. The case (ii)=(dashdotted) accomplishes the greatest suppression in radiation and, as can be seen in
In one example, two singleturn loops of r=30 cm and a=2 cm are at a distance D/r=5 in the orientation shown in
In another example, two singleturn loops of r=30 cm and a=2 cm are at a distance D/r=5 in the orientation shown in
In another example, two singleturn loops of r=1 m and a=2 cm are at a distance D/r=5 in the orientation shown in
In another example, two singleturn loops of r=1 m and a=2 cm are at a distance D/r=5 in the orientation shown in
Consider two dielectric disks 1 and 2 of radius r and dielectric permittivity ∈ placed at distance D between their centers, as shown in
To compute the interference factor between two coupled disks at distance D, we again use two independent methods to confirm the validity of our results: numerically, the FEFD calculations again give ∇ (and thus V) by the splitting of the lossrates of the two normal modes; analytically, calculation of the AT prediction of Eq. (47) gives
The results for the interference of two same disks, for exactly the same parameters for which the coupling was calculated in
Furthermore, not only does a given energytransfer system perform better than what a prediction which ignores interference would predict, but also our optimization design will typically lead to different optimal set of parameters in the presence of interference. For example, for the particular distance D/r=5, it turns out from
In some examples, instead of improving efficiency, one might care more about minimizing radiation. In that case, we calculate at the frequency f_{U }how much power is radiated when optimized under the conditions Eq. (57) compared to the power radiated when simply operating on resonance (D_{o}=0) in the cases with and without interference (the latter case can be describing a case where the two disks do not interfere, because they are dissimilar, or due to decoherence issues etc.). We find in
In general, the overall performance of an example of the resonancebased wireless energytransfer scheme depends strongly on the robustness of the resonant objects'"'"' resonances. Therefore, it is desirable to analyze the resonant objects'"'"' sensitivity to the near presence of random nonresonant extraneous objects. One appropriate analytical model is that of “perturbation theory” (PT), which suggests that in the presence of an extraneous perturbing object p the field amplitude a_{1}(t) inside the resonant object 1 satisfies, to first order:
where again ω_{1 }is the frequency and Γ_{1 }the intrinsic (absorption, radiation etc.) loss rate, while δκ_{11(p) }is the frequency shift induced onto 1 due to the presence of p and δΓ_{1(p) }is the extrinsic due to p (absorption inside p, scattering from p etc.) loss rate. δΓ_{1(p) }is defined as δΓ_{1(p)}≡Γ_{1(p)}−Γ_{1}, where Γ_{1(p) }is the total perturbed loss rate in the presence of p. The firstorder PT model is valid only for small perturbations. Nevertheless, the parameters δκ_{11(p)}, δΓ_{1(p) }are well defined, even outside that regime, if a_{1 }is taken to be the amplitude of the exact perturbed mode. Note also that interference effects between the radiation field of the initial resonantobject mode and the field scattered off the extraneous object can for strong scattering (e.g. off metallic objects) result in total Γ_{1,rad(p) }that are smaller than the initial Γ_{1,rad }(namely δΓ_{1,rad(p) }is negative).
It has been shown that a specific relation is desired between the resonant frequencies of the source and deviceobjects and the driving frequency. In some examples, all resonant objects must have the same eigenfrequency and this must be equal to the driving frequency. In some examples, when trying to optimize efficiency or suppress radiation by employing farfield interference, all resonant objects must have the same eigenfrequency and the driving frequency must be detuned from them by a particular amount. In some implementations, this frequencyshift can be “fixed” by applying to one or more resonant objects and the driving generator a feedback mechanism that corrects their frequencies. In some examples, the driving frequency from the generator can be fixed and only the resonant frequencies of the objects can be tuned with respect to this driving frequency.
The resonant frequency of an object can be tuned by, for example, adjusting the geometric properties of the object (e.g. the height of a selfresonant coil, the capacitor plate spacing of a capacitivelyloaded loop or coil, the dimensions of the inductor of an inductivelyloaded rod, the shape of a dielectric disc, etc.) or changing the position of a nonresonant object in the vicinity of the resonant object.
In some examples, referring to
In some examples, referring to
In other examples, the frequency adjusting scheme can rely on information exchange between the resonant objects. For example, the frequency of a source object can be monitored and transmitted to a device object, which is in turn synched to this frequency using frequency adjusters, as described above. In other embodiments the frequency of a single clock can be transmitted to multiple devices, and each device then synched to that frequency using frequency adjusters, as described above.
Unlike the frequency shift, the extrinsic perturbing loss due to the presence of extraneous perturbing objects can be detrimental to the functionality of the energytransfer scheme, because it is difficult to remedy. Therefore, the total perturbed quality factors Q_{(p) }(and the corresponding perturbed strongcoupling factor U_{(p) }and the perturbed stronginterference factor V_{(p)}) should be quantified.
In some examples, a system for wireless energytransfer uses primarily magnetic resonances, wherein the energy stored in the near field in the air region surrounding the resonator is predominantly magnetic, while the electric energy is stored primarily inside the resonator. Such resonances can exist in the quasistatic regime of operation (r<<80) that we are considering: for example, for coils with h2 r, most of the electric field is localized within the selfcapacitance of the coil or the externally loading capacitor and, for dielectric disks, with ∈1 the electric field is preferentially localized inside the disk. In some examples, the influence of extraneous objects on magnetic resonances is nearly absent. The reason is that extraneous nonconducting objects p that could interact with the magnetic field in the air region surrounding the resonator and act as a perturbation to the resonance are those having significant magnetic properties (magnetic permeability Re{μ}>1 or magnetic loss Im{μ}>0). Since almost all everyday nonconducting materials are nonmagnetic but just dielectric, they respond to magnetic fields in the same way as free space, and thus will not disturb the resonance of the resonator. Extraneous conducting materials can however lead to some extrinsic losses due to the eddy currents induced inside them or on their surface (depending on their conductivity). However, even for such conducting materials, their presence will not be detrimental to the resonances, as long as they are not in very close proximity to the resonant objects.
The interaction between extraneous objects and resonant objects is reciprocal, namely, if an extraneous object does not influence a resonant object, then also the resonant object does not influence the extraneous object. This fact can be viewed in light of safety considerations for human beings. Humans are also nonmagnetic and can sustain strong magnetic fields without undergoing any risk. A typical example, where magnetic fields B˜1T are safely used on humans, is the Magnetic Resonance Imaging (MRI) technique for medical testing. In contrast, the magnetic nearfield required in typical embodiments in order to provide a few Watts of power to devices is only B˜10^{−4}T, which is actually comparable to the magnitude of the Earth'"'"'s magnetic field. Since, as explained above, a strong electric nearfield is also not present and the radiation produced from this nonradiative scheme is minimal, the energytransfer apparatus, methods and systems described herein is believed safe for living organisms.
In some examples, one can estimate the degree to which the resonant system of a capacitivelyloaded conductingwire coil has mostly magnetic energy stored in the space surrounding it. If one ignores the fringing electric field from the capacitor, the electric and magnetic energy densities in the space surrounding the coil come just from the electric and magnetic field produced by the current in the wire; note that in the far field, these two energy densities must be equal, as is always the case for radiative fields. By using the results for the fields produced by a subwavelength (rλ) current loop (magnetic dipole) with h=0, we can calculate the ratio of electric to magnetic energy densities, as a function of distance D_{p }from the center of the loop (in the limit rD_{p}) and the angle θ with respect to the loop axis:
where the second line is the ratio of averages over all angles by integrating the electric and magnetic energy densities over the surface of a sphere of radius D_{p}. From Eq. (62) it is obvious that indeed for all angles in the near field (x1) the magnetic energy density is dominant, while in the far field (x1) they are equal as they should be. Also, the preferred positioning of the loop is such that objects which can interfere with its resonance lie close to its axis (θ=0), where there is no electric field. For example, using the systems described in Table 4, we can estimate from Eq. (62) that for the loop of r=30 cm at a distance D_{p}=10 r=3 m the ratio of average electric to average magnetic energy density would be ˜12% and at D_{p}=3 r=90 cm it would be ˜1%, and for the loop of r=10 cm at a distance D_{p}=10 r=1 m the ratio would be ˜33% and at D=3 r=30 cm it would be ˜2.5%. At closer distances this ratio is even smaller and thus the energy is predominantly magnetic in the near field, while in the radiative far field, where they are necessarily of the same order (ratio→1), both are very small, because the fields have significantly decayed, as capacitivelyloaded coil systems are designed to radiate very little. Therefore, this is the criterion that qualifies this class of resonant system as a magnetic resonant system.
To provide an estimate of the effect of extraneous objects on the resonance of a capacitivelyloaded loop including the capacitor fringing electric field, we use the perturbation theory formula, stated earlier, δΓ_{1,abs(p)}=ω_{1}/4·∫d^{3 }r Im {∈_{p}(r)}E_{1}(r)^{2}/W with the computational FEFD results for the field of an example like the one shown in the plot of
Selfresonant coils can be more sensitive than capacitivelyloaded coils, since for the former the electric field extends over a much larger region in space (the entire coil) rather than for the latter (just inside the capacitor). On the other hand, selfresonant coils can be simple to make and can withstand much larger voltages than most lumped capacitors. Inductivelyloaded conducting rods can also be more sensitive than capacitivelyloaded coils, since they rely on the electric field to achieve the coupling.
For dielectric disks, small, lowindex, lowmaterialloss or faraway stray objects will induce small scattering and absorption. In such cases of small perturbations these extrinsic loss mechanisms can be quantified using respectively the analytical firstorder perturbation theory formulas
[δQ_{1,rad(p)}]^{−1}≡2δΓ_{1,rad(p)}/ω_{1}∝∫d^{3}r[Re{∈_{p}(r)}E_{1}(r)]^{2}/W
[δQ_{1,rad(p)}]^{−1}≡2δΓ_{1,abs(p)}/ω_{1}=∫d^{3}r Im{∈_{p}(r)}E_{1}(r)^{2}/2W
where W=∫d^{3 }r∈(r)E_{1}(r)^{2}/2 is the total resonant electromagnetic energy of the unperturbed mode. As one can see, both of these losses depend on the square of the resonant electric field tails E1 at the site of the extraneous object. In contrast, the coupling factor from object 1 to another resonant object 2 is, as stated earlier,
k_{12}=2κ_{12}/√{square root over (ω_{1}ω_{2})}≈∫d^{3}r∈_{2}(r)E_{2}*(r)E_{1}(r)/∫d^{3}r∈(r)E_{1}(r)^{2 }
and depends linearly on the field tails E_{1 }of 1 inside 2. This difference in scaling gives us confidence that, for, for example, exponentially small field tails, coupling to other resonant objects should be much faster than all extrinsic loss rates (κ_{12}δΓ_{1,2(p)}), at least for small perturbations, and thus the energytransfer scheme is expected to be sturdy for this class of resonant dielectric disks.
However, we also want to examine certain possible situations where extraneous objects cause perturbations too strong to analyze using the above firstorder perturbation theory approach. For example, we place a dielectric disk close to another offresonance object of large Re {∈}, Im{∈} and of same size but different shape (such as a human being h), as shown in
In general, different examples of resonant systems have different degree of sensitivity to external perturbations, and the resonant system of choice depends on the particular application at hand, and how important matters of sensitivity or safety are for that application. For example, for a medical implantable device (such as a wirelessly powered artificial heart) the electric field extent must be minimized to the highest degree possible to protect the tissue surrounding the device. In such cases where sensitivity to external objects or safety is important, one should design the resonant systems so that the ratio of electric to magnetic energy density w_{e}/W_{m }is reduced or minimized at most of the desired (according to the application) points in the surrounding space.
The nonradiative wireless energy transfer techniques described above can enable efficient wireless energyexchange between resonant objects, while suffering only modest transfer and dissipation of energy into other extraneous offresonant objects. The technique is general, and can be applied to a variety of resonant systems in nature. In this Section, we identify a variety of applications that can benefit from or be designed to utilize wireless power transmission.
Remote devices can be powered directly, using the wirelessly supplied power or energy to operate or run the devices, or the devices can be powered by or through or in addition to a battery or energy storage unit, where the battery is occasionally being charged or recharged wirelessly. The devices can be powered by hybrid battery/energy storage devices such as batteries with integrated storage capacitors and the like. Furthermore, novel battery and energy storage devices can be designed to take advantage of the operational improvements enabled by wireless power transmission systems.
Devices can be turned off and the wirelessly supplied power or energy used to charge or recharge a battery or energy storage unit. The battery or energy storage unit charging or recharging rate can be high or low. The battery or energy storage units can be trickle charged or float charged. It would be understood by one of ordinary skill in the art that there are a variety of ways to power and/or charge devices, and the variety of ways could be applied to the list of applications that follows.
Some wireless energy transfer examples that can have a variety of possible applications include for example, placing a source (e.g. one connected to the wired electricity network) on the ceiling of a room, while devices such as robots, vehicles, computers, PDAs or similar are placed or move freely within the room. Other applications can include powering or recharging electricengine buses and/or hybrid cars and medical implantable devices. Additional example applications include the ability to power or recharge autonomous electronics (e.g. laptops, cellphones, portable music players, household robots, GPS navigation systems, displays, etc), sensors, industrial and manufacturing equipment, medical devices and monitors, home appliances (e.g. lights, fans, heaters, displays, televisions, countertop appliances, etc.), military devices, heated or illuminated clothing, communications and navigation equipment, including equipment built into vehicles, clothing and protectivewear such as helmets, body armor and vests, and the like, and the ability to transmit power to physically isolated devices such as to implanted medical devices, to hidden, buried, implanted or embedded sensors or tags, to and/or from rooftop solar panels to indoor distribution panels, and the like.
In some examples, farfield interference can be utilized by a system designer to suppress total radiation loss and/or to increase the system efficiency. In some examples, systems operating optimally closer to the radiative regime can benefit more from the presence of farfield interference, which leads to reduced losses for the subradiant normal mode of the coupled objects, and this benefit can be substantial.
A number of examples of the invention have been described. Nevertheless, it will be understood that various modifications can be made without departing from the spirit and scope of the invention.