×

METHOD OF DETECTING AN INTER-AXIS OFFSET OF 6-AXIS ROBOT

  • US 20120239194A1
  • Filed: 03/19/2012
  • Published: 09/20/2012
  • Est. Priority Date: 03/18/2011
  • Status: Active Grant
First Claim
Patent Images

1. A method of detecting an inter-axis offset of a robot, which is a 6-axis robot including a base link fixed to an installation surface and a robot arm opposed to the base link, and the robot arm is configured by sequentially interconnecting a first link, a second link, a third link, a fourth link, a fifth link, and a sixth link of a robot arm through a first rotation joint, a second rotation joint, a third rotation joint, a fourth rotation joint, a fifth rotation joint, and a sixth rotation joint, wherein a rotation center line of a rotation shaft of the second rotation joint connecting the second link to the first link extends in parallel to a direction perpendicular to a rotation center line of a rotation shaft of the first rotation joint connecting the first link to the base link, a rotation center line of a rotation shaft of the third rotation joint connecting the third link to the second link extends in parallel to the rotation center line of the rotation shaft of the second rotation joint, a rotation center line of a rotation shaft of the fourth rotation joint connecting the fourth link to the third link extends in parallel to a direction perpendicular to the rotation center line of the rotation shaft of the third rotation joint, a rotation center line of a rotation shaft of the fifth rotation joint connecting the fifth link to the fourth link extends in parallel to a direction perpendicular to the rotation center line of the rotation shaft of the fourth rotation joint, a rotation center line of a rotation shaft of the sixth rotation joint connecting the sixth link to the fifth link extends in parallel to a direction perpendicular to the rotation center line of the rotation shaft of the fifth rotation joint, coordinates of the first to sixth links are set on the rotation center lines of the rotation shafts of the first to sixth rotation joints, and a coordinate of an end effector of the robot arm is set at a position of a rotation center of a distal end surface of the sixth link, the distal end surface corresponding to a most distal end of the robot arm, the position of the rotation center of the distal end corresponding to a position of the end effector, the method comprising:

  • arranging a measurement point on the end effector and arranging a three-dimensional measurement means capable of measuring a three-dimensional position of the measurement point;

    rotating the robot arm around the rotation shaft of the first rotation joint while maintaining a posture in which the rotation center line of the fifth rotation joint is in parallel to the rotation center lines of the second rotation joint and the third rotation joint, and measuring three or more different positions of the measurement point, which moves along a circular rotation trajectory by the rotation of the robot arm, by a three-dimensional measurement means;

    from the three or more different positions of the measurement point on the circular rotation trajectory, obtaining a normal line of a plane including a center position of the rotation trajectory and the three or more different positions of the measurement point, and determining a reference coordinate in which a center of the rotation trajectory of the measurement point serves as an origin of the reference coordinate, a linear lines extending through the origin in parallel to the normal line serves as a Z-axis thereof, a linear lines extending through the origin and perpendicular to the Z-axis serves as an X-axis thereof, and a linear lines extending through the origin and perpendicular to both the Z-axis and the X-axis as a Y-axis thereof;

    determining a plurality of positions on one plane including the Z-axis of the reference coordinate and extending from the Z-axis as target positions of movement, and moving the end effector to the target positions of movement;

    performing a correction in order to prevent occurrence of position error of the end effector due to a motor origin error of a motor operating the first to sixth links through first to sixth driving systems including the rotation shafts of the first to sixth rotation joints, a deflection of the first to sixth rotation driving systems, the position errors by the length errors of the first to sixth links, and angle errors between rotations shafts of a rotation joint and a next rotation joint;

    rotating the rotation shaft of the first rotation joint to a position, which enables the end effector to be moved to the target positions of movement by rotating at least one rotation joint among the second, third, and fifth rotation joints while maintaining a state in which the rotation center line of the fifth rotation joint is parallel to the rotation center lines of the rotation shafts of the second and third rotation joints, moving the end effector to each of the target positions of movement by rotating at least one rotation joint among the second, third, and fifth rotation joints, while fixing the rotation shaft of the first rotation joint, and measuring the position of the measurement point by the three-dimensional measurement means at the respective target positions of movement;

    obtaining X and Y coordinate values of the measurement point on the reference coordinate by performing a coordinate transformation of the positions of the measurement point measured at the target positions of movement into positions on the reference coordinate, plotting the obtained X and Y coordinate values of the measurement point on the X-Y plane of the reference coordinate, putting segments interconnecting the plotted points as measurement dependence segments, obtaining a length of a perpendicular line from the origin of the reference coordinate onto a linear lines obtained by extending the measurement dependence segments, and determining the obtained length of the perpendicular line as an amount of deviation; and

    determining the determined amount of deviation as a sum of inter-axis offsets of the second, third, and fifth rotation joints.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×