×

APPARATUS FOR ACCELERATING AND COMPRESSING PLASMA

  • US 20150216028A1
  • Filed: 08/29/2013
  • Published: 07/30/2015
  • Est. Priority Date: 08/29/2012
  • Status: Active Grant
First Claim
Patent Images

1. An apparatus for accelerating and compressing plasma, comprising:

  • a plasma accelerator comprising a tubular outer electrode and a tubular inner electrode extending inside the outer electrode such that an annular plasma propagation channel is defined therebetween for accelerating and compressing a plasma torus therethrough, the accelerator having an inlet for receiving the plasma torus from a plasma generator, an outlet for discharging an accelerated and compressed plasma torus, the plasma propagation channel having a lengthwise elongated section with an upstream end in fluid communication with the inlet and a downstream end in fluid communication with the outlet, and wherein a cross-sectional annular gap defined as a radial distance between the inner and outer electrodes decreases non linearly in a downstream direction along the length of the elongated section; and

    a power source electrically coupled to the accelerator and configured to provide an electrical acceleration pulse that produces a current that flows in the accelerator and generates a magnetic pushing flux behind the plasma torus that is sufficient to push the plasma torus from the upstream end and through the elongated section to the downstream end and the outlet of the accelerator;

    wherein the apparatus is configured to have a sufficient inductance before the elongated section that the plasma torus is accelerated and compressed throughout the elongated section by an expansion of the magnetic pushing flux, and wherein the dimensions of the plasma propagation channel are selected such that for a selected inductance of the elongated section and selected inductance before the elongated section, the current flowing in the elongated section at the downstream end is smaller than at the upstream end of the elongated section and a plasma torus pressure is greater at the downstream end of the elongated section than at the upstream end of the elongated section.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×