×

Solid polyurethane tire and wheel assembly

  • US 4,071,279 A
  • Filed: 04/21/1975
  • Issued: 01/31/1978
  • Est. Priority Date: 04/21/1975
  • Status: Expired due to Term
First Claim
Patent Images

1. A substantially solid industrial polyurethane tire/wheel assembly is provided comprised of a solid polyurethane tire adhered to a centered rigid core adapted to fit to the axle of an industrial vehicle where said polyurethane is prepared by the method which comprises reacting (I) a complex of 4,4'"'"'-methylene dianiline and a salt selected from sodium chloride, sodium bromide, sodium iodide, sodium nitrile, lithium chloride, lithium bromide, lithium iodide, lithium nitrite and sodium cyanide, where the mole ratio of said dianiline to said salt is about 3/1, and where said complex is provided as a dispersion in a plasticizer selected from dioctyl phthalate, tetraethylene glycol di(2-ethylhexoate) and dibutoxy ethoxy ethyl formal, said dispersion containing about 50 to about 150 parts by weight plasticizer per 100 parts by weight complex, with (II) at least one prepolymer selected from the reaction product of a diisocyanate selected from 2,4- and 2,6-toluene diisocyanate, diphenyl methane-4,4'"'"'-diisocyanate, 3,3'"'"'--dimethyldiphenyl methane-4,4'"'"'-diisocyanate, 1,5-naphthylene diisocyanate and 3,3'"'"'-bitolylene-4,4'"'"'-diisocyanate with at least one polymeric polyol having a molecular weight in the range of about 800 to about 3200, preferably about 800 to about 2500, and a hydroxyl functionality in the range of about 2 to about 2.8, selected fromA. polyester polyols selected from (1) the product of ε

  • -caprolactone with a diol selected from diethylene glycol and hydrocarbon diols selected from 1,4-butane diol, 1,5-pentane diol, and 1,6-hexane diol, (2) the condensation of low molecular weight saturated hydrocarbon diols containing 3 to 10 carbon atoms with an organic polycarboxylic acid selected from succinic acid, adipic acid and azelaic acid, as well as anhydrides of such acids,B. polyol mixtures containing about 75 to about 100 weight percent of said polyester polyols of (A) and, correspondingly, about 25 to about zero weight percent of polyether polyols of the type prepared by (1) polymerizing or copolymerizing alkylene oxides selected from ethylene oxide, propylene oxide and butylene oxide, (2) polymerizing or copolymerizing low molecular weight glycols selected from ethylene glycol, 1,3-propane diol and 1,4-butane diol, (3) or by the reaction of one or more of said alkylene oxides with said glycols and, optionally, with the addition of a small amount of a triol such as trimethylol propane,C. a polyol mixture containing about 25 to about 50 weight percent of said polyether polyols and, correspondingly, about 75 to about 50 weight percent of a polyester polyol selected from polyethylene adipate, polyethylene propylene adipate and polydiethylene adipate,D. a polyol mixture comprising about 50 to about 100 weight percent of the polyester polyol of (A) and, correspondingly, about 50 to about 0 weight percent of a polyester polyol selected from polyethylene adipate, polyethylene propylene adipate and polydiethylene adipate,E. about 75 to about 100 weight percent of the prepolymer of (A) and correspondingly about 25 to about 0 weight percent of a prepolymer derived from the reaction of said diisocyanate and at least one of said polyether polyols,F. about 50 to about 75 weight percent of the reaction product of said diisocyanate and at least one polyester polyol selected from polyethylene adipate, polyethylene propylene adipate and polydiethylene adipate, and, correspondingly, about 50 to about 25 weight percent of the reaction product of a diisocyanate and said polyether polyol, andG. about 50 to about 100 weight percent of the prepolymer of (A) and, correspondingly, about 50 to about 0 weight percent of the reaction product of said diisocyanate and a polyester polyol selected from polyethylene adipate, polyethylene propylene adipate and polydiethylene adipate;

    where the ratio of isocyanato groups of said diisocyanate to hydroxyl groups of said polymeric polyols is in the range of about 1.5/1 to about 3/1 and where the amino groups of said 4,4'"'"'-methylene dianiline complex to excess isocyanato groups over said hydroxyl groups is in the range of about 0.7/1 to about 1.2/1.

View all claims
  • 0 Assignments
Timeline View
Assignment View
    ×
    ×