×

Driving circuit for a matrix-addressed liquid crystal display device

  • US 4,082,430 A
  • Filed: 01/21/1977
  • Issued: 04/04/1978
  • Est. Priority Date: 03/30/1971
  • Status: Expired due to Term
First Claim
Patent Images

1. A driving circuit for a matrix addressed liquid crystal display device comprising a plurality of row and column electrodes forming a matrix, a liquid crystal disposed between said row and column electrodes, resistor means including a plurality of resistors, circuit means connecting one end of each row and column electrode to one end of a respective one of said resistors, further circuit means connecting the other ends of each resistor to a common point, said liquid crystal having a threshold such that low frequency voltages with a magnitude above said threshold cause dynamic scattering of light in said liquid crystal, said driving circuit further comprising first source means for providing a first electric voltage of a frequency less than a given low frequency and having a magnitude greater than the threshold voltage above which said dynamic scattering is caused, said given low frequency being in a frequency range in which the threshold of said liquid crystal means is substantially frequency independent, first means for applying said first electric voltage between selected row and selected column electrodes for causing dynamic scattering at the matrix crossings defined by said selected row and selected column electrodes, and second means including second source means for simultaneously applying a second voltage having a frequency higher than said given low frequency between said selected column and selected row electrodes and said common point so that said first and second voltage components are both present simultaneously at the crossings of non-selected electrodes with selected electrodes, said second voltage of a frequency higher than said given low frequency having a magnitude and frequency at which in combination with said first voltage the dynamic scattering is substantially completely suppressed, and the dynamic scattering due to said first electric voltage alone is not suppressed at the crossing of said selected row and selected column electrodes, whereby cross-talk is avoided.

View all claims
  • 0 Assignments
Timeline View
Assignment View
    ×
    ×