×

Body-mounted light source-detector apparatus

  • US 4,510,938 A
  • Filed: 01/24/1983
  • Issued: 04/16/1985
  • Est. Priority Date: 06/28/1977
  • Status: Expired due to Term
First Claim
Patent Images

1. Spectrophotometric measuring apparatus for measuring a selected activity of a selected portion of a human body where such activity bears a measurable relation to an absorption characteristic of the selected portion for a particular wavelength of light, including in combination:

  • (a) first optical cable means providing a bundle of optical fibers with selected fibers connected for receiving and transmitting the output light emissions of light sources at measuring and reference wavelengths to a selected point of light entry on said selected portion of said body and other selected fibers connected for receiving and transmitting light emissions reflected directly back from said selected point of light entry to a processing means;

    (b) second optical cable means providing a bundle of optical fibers connected for receiving and transmitting light emissions reflected and scattered to a selected point of light exit on said selected portion of said body to a processing means;

    (c) a first preformed optical module comprising a molded cylindrical hollow housing enclosing first light guide means formed by a right-angle-shaped bundle of optical fibers optically coupled at one end to said first optical cable means and at the opposite end having a first optical light emitting face centrally positioned in an outer face of said housing and adaptdd to be mated in a substantially pressed fit relation with said selected point of light entry;

    (d) a second preformed optical module comprising a second molded cylindrical hollow housing of the same size as said first housing and enclosing second light guide means formed by a right-angle-shaped bundle of optical fibers optically coupled at one end to said second optical cable means and at the opposite end having a second optical light receiving face centrally positioned in an outer face of said second module housing and adapted to be mated in a substantially pressed-fit relation with said selected point of light exit;

    (e) first and second socket structures of similar size, each being molded as an integral internally-hollow structure having a cylindrical side wall with an open base end and an opposite closed end, a slot in the wall structure for passing therethrough a respective optical fiber bundle leading from a respective said module, and a plurality of thin flexible tab members of uniform size and length extending radially outward from and circumferentially spaced on said base end, said first socket structure being adapted to receive in snug-fit relation said first optical module housing with the optical cable connected end portion of the fiber bundle associated with said first optical module passing through the slot of said first socket side wall and the said second socket structure being adapted to receive in snug-fit relation said second optical module with the optical cable connected portion of the fiber bundle associated with said second optical module passing through the slot of the said second socket side wall, and including adhesive means on the bottom surfaces of said tab members enabling the tab members of said first socket structure to be secured to the body in laterally spaced relation with respect to the tab members of the second socket structure whereby to secure said optical modules in correspondingly-spaced relation; and

    (f) a flexible light-shielding pad having one adhesive surfaced side, having a pair of apertures formed to receive said socket structures in a predetermined spaced relation, having slit portions of said pad connecting said apertures to an outer edge thereof thereby enabling said shielding pad to be fitted over said tab members while allowing the optical cables associated with said modules to lead away from said shielding pad over and above the outer surface thereof and in a manner enabling said adhesive surfaced side to be adhesively secured to the body and the respective optical faces of said modules to be light shielded by said adhesively faced side of said panel.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×