×

Method and apparatus for simultaneously cooling and conveying a food substance

  • US 4,569,204 A
  • Filed: 03/11/1985
  • Issued: 02/11/1986
  • Est. Priority Date: 03/11/1985
  • Status: Expired due to Fees
First Claim
Patent Images

1. Apparatus for removing heat energy from a substantially continuous flow of a food substance such as ground meat or the like while conveying the flow of food substance along a path of travel from an inlet to an outlet, with the extent to which heat energy is removed from the flow of food substance being adjustable to accommodate variations in flow rate character, consistency, and temperature or the like of the flow of food substance that enters the inlet, while assuring that the temperature of the food substance that discharges through the outlet does not exceed a predetermined maximum discharge temperature, the apparatus comprising:

  • (a) a conveyor assembly including auger means for rotation about an axis of rotation, and housing means including an inner, generally cylindrical casing that defines an elongate, generally cylindrical inner chamber that surrounds at least a portion of the auger means and that extends between inlet and outlet locations that are spaced along the axis of rotation, with the housing means additionally including structure defining inlet means for communicating with the inner chamber at the inlet location, and defining outlet means for communicating with the inner chamber at the outlet location, and with the auger means and the housing means being cooperable such that, when the auger means is rotated relative to the housing means about the axis of rotation, the conveyor assembly will operate to convey a flow of food substance such as ground meat or the like that is ducted through the inlet means to the inlet location and is thence caused to be conveyed along a path of travel that extends through the inner chamber of the housing means from the inlet location to the outlet location for discharge from the inner chamber through the outlet means, the conveyor assembly additionally including power operated means drivingly connected to the auger means for rotating the auger means about the axis of rotation relative to the housing means at a predetermined speed of rotation and in a rotational direction that will cause the auger means to convey said flow of food substance through the inner chamber of the housing means along said travel path from the inlet means to the outlet means, and further including support means for supporting and journaling the auger means for rotation about the axis of rotation, and for supporting the power operated means, the support means additionally including floor engaging means for engaging a substantially planar support surface such as a floor, and the support means further being operable to support the housing means and the auger means such that the inner chamber of the housing means and the axis of rotation of the auger means are inclined at a predetermined angle of inclination with respect to a support surface on which the floor engaging means serves to support the conveyor assembly, and such that the path of travel that is followed by the flow of food substance as it is conveyed through the inner chamber of the housing means is inclined relatively upwardly from the inlet location to the outlet location;

    (b) heat extraction means for cooling the inner casing of the housing means so that, as the flow of food substance is conveyed through the inner chamber from the inlet location to the outlet location, heat energy is caused to be removed from the food substance by virtue of its being cooled through conductive heat transfer as the food substance engages the cooled inner casing, the heat extraction means including a second casing that surrounds the inner casing along at least a part of the length of the inner casing that extends between the inlet location and the outlet location, and that cooperates with the inner casing to define a generally annular refrigerant chamber that surrounds at least said part of the length of the inner casing for containing a refrigerant therein that is operable to cool the inner casing while also serving to contain the refrigerant so that the refrigerant is segregated from and does not come into direct contact with such food substance as may be fed through the inlet means, through the inner chamber and through the outlet means, the second casing being of generally cylindrical configuration and being oriented to extend substantially coaxially about the inner casing such that the second casing has a lower end region located in proximity to the inlet means, and an upper end region located in proximity to the outlet means, the heat extraction means further including refrigerant inlet means for introducing refrigerant into the annular refrigerant chamber in proximity to the lower end region of the second casing, and refrigerant outlet means for discharging refrigerant from the annular refrigerant chamber in proximity to the upper end region of the second casing, and including refrigerant flow path defining means cooperating with at least a selected one of the inner casing and the second casing to define at least one path of flow for refrigerant that extends from the refrigerant inlet means to the refrigerant outlet means, with the at least one path of flow for refrigerant extending about the circumference of the inner casing to enhance the extent to which the refrigerant is brought into heat transfer relationship with the inner casing as the refrigerant is ducted along said at least one path of flow for refrigerant; and

    ,(c) refrigeration control means for adjusting the degree to which the heat extraction means is operable to withdraw heat energy from the inner casing and to thereby cool the flow of food substance that is conveyed through the inner chamber, the control means including means for sensing the temperature at which refrigerant is permitted to discharge from the refrigerant outlet means, and valve means for admitting additional refrigerant to the refrigerant inlet means in response to sensed temperature of the discharged refrigerant, with the refrigeration control means being operable to introduce refrigerant in the form of a liquid cryogen through the refrigerant inlet means as such liquid cryogen is needed to maintain the temperature of the discharged refrigerant at or only slightly below a predetermined refrigerant discharge temperature, with the predetermined refrigerant discharge temperature being selected to be a temperature at which the liquid cryogen will have evaporated to form a refrigerant gas, and being selected to be lower than a predetermined maximum discharge temperature for the food substance that discharges from the outlet means, and with the difference between the predetermined refrigerant discharge temperature and the predetermined maximum discharge temperature for the food substance being such as will assure that, to the extent that the flow of food substance that passes through the apparatus may vary in character, content and inlet temperature, the temperature at which the flow of food substance discharges from the discharge means will not exceed said predetermined maximum discharge temperature for the discharging flow of food, and such that the temperature at which the flow of food substance discharges from the discharge means will not differ by more than a few degrees Fahrenheit from said maximum predetermined discharge temperature for the discharging flow of food despite such variations as may occur in flow rate, character, consistency, temperature and the like of the food substance that enters the inlet means.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×