×

Triaxial tactile sensor

  • US 4,745,812 A
  • Filed: 03/25/1987
  • Issued: 05/24/1988
  • Est. Priority Date: 03/25/1987
  • Status: Expired due to Fees
First Claim
Patent Images

1. A very sensitive, high resolution, transducer array-type tactile sensor adaptable for use with various electro-mechanical and fluidic or pneumatic mechanisms and manipulators including robot end-effectors, for determining lateral or shear forces in conjunction with normal force measurement to aid in the determining of sensor-applied mechanical to electrical transduction forces which in turn help determine any object slip and/or object rotation in the grasp of a robot end-effector;

  • said sensor comprising in combination;

    (a) a micro-thinned silicon wafer main body member 12 having top and bottom surfaces and a predetermined plurality of closely spaced microminature, tactile sensor boss elements 16 forming an array, each boss element 16 disposed centrally of and projecting upwardly above the top surface from a reduced body thickness portion constituting an annular more flexible diaphragm portion 14, said bossed tactile sensor elements 16 and their respective diaphragm portions 14 being susceptible to mechanical perturbative movement from various applied forces including triaxial forces as applied to the various tactile boss elements surfaces;

    (b) lower support layer means 18 upon which said main body member 12 via its bottom surface is engagingly supported, said layer means 18 being constituted by a layer of material which is thermally compatible to reduce any thermal stress gradient between said body member and support layer, said support layer having a corresponding plurality of recessed areas 19 corresponding generally in size and alignment location to that of the said diaphragms and tactile sensor boss elements 16; and

    (c) circuit means C1, C2 in association with said tactile sensor elements 16 to help constitute the transducer array including circuit portions C1 fabricated directly in conjunction with said main body 12 and support layer means 18, to generate electrical signals responsive to mechanical perturbation across said tactile sensor elements 16, with said electrical signals being adaptable for interpretive processing to effectively determine any object slip and/or object rotation of an object in the grasp of a robot end-effector.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×