×

Mandibular motion monitoring system

  • US 4,836,778 A
  • Filed: 05/26/1987
  • Issued: 06/06/1989
  • Est. Priority Date: 05/26/1987
  • Status: Expired due to Fees
First Claim
Patent Images

1. The method of tracing the movement of a minor body in space in relation to a major body that is also movable in space where the minor body is connected to, and supported by, the major body in such a way that movement of the major body is imparted to the minor body while the minor body is movable in relation to the major body, comprising the steps of:

  • positioning a first light detector and a second light detector in immovable positions and in fixed, spaced-apart relation to each other, where said first and second light detectors each has a planar light-sensitive surface that has the capability of generating electrical signals indicative of the physical location where said light is incident on said light-sensitive surface and a lens system for focusing a beam of light onto the light-sensitive surface;

    defining a first planar two-dimensional coordinate system for said first detector for indicating the position of an incident light spot on the light-sensitive surface of the first detector, and defining a second planar two-dimensional coordinate system for said second detector for indicating the position of an incident light spot on the light-sensitive surface of the second detector;

    defining a system frame of reference in terms of a three-dimensional coordinate system by positioning a plurality of calibraiton light-emitting sources in fixed, precisely measured spatial relation to each other in the field of vision of the first and second detectors, detecting the positions of said calibration light-emitting sources with the first and second detectors, and calibrating the image coordinate systems of said first and second detectors to correspond with the measured spatial relationships of the calibration light-emitting sources;

    attaching at least three major body light-emitting sources in fixed spaced-apart relation to each other on said major body, and attaching at least three minor body light-emitting sources in fixed spaced-apart relation to each other on said minor body;

    detecting the locations of said major body light-emitting sources and of said minor body light-emitting sources in the system frame of reference with said first and second detectors, and calculating three-dimensional image coordinate designations for each of those locations as a function of the respective first and second two-dimensional coordinates of the incident light spots on the respective light-sensitive surfaces of the first and second detectors;

    transforming said coordinate designations of said minor body light-emitting sources to a local major frame of reference defined by the positions of said major body light-emitting sources by defining a local major coordinate system that is fixed in spatial relation to said major body light-emitting sources, defining a local minor body coordinate system that is fixed in spatial relation to said minor body light-emitting sources, and offsetting the local minor coordinates of the minor body light-emitting sources with the local major coordinate system; and

    moving the minor body in relation to the major body for a period of time while detecting positions of both the major body light-emitting sources and the minor body light-emitting sources and transforming coordinates of the positions detected to the local major coordinate system.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×