×

Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

  • US 5,074,658 A
  • Filed: 07/31/1989
  • Issued: 12/24/1991
  • Est. Priority Date: 07/31/1989
  • Status: Expired due to Fees
First Claim
Patent Images

1. Laser capillary spectrophotometric apparatus for rapid measurement of drop size and concentration in a liquid-liquid dispersion within a reactor vessel, the dispersion being formed of two immiscible liquids with mass transfer occurring across a boundary between the liquids with or without reactions occurring in either or both liquids;

  • comprisinga transparent capillary tube having a bore of a predetermined inner diameter, means at an intake end in communication with the dispersion in said reactor vessel, and means on an outlet end for drawing the dispersion through said capillary tube at a desired controlled rate;

    a source of coherent light for producing first and second beams of coherent light at a predetermined known wavelength and directing same along respective first and second paths which pass across the bore of said transparent capillary tube at locations separated by a predetermined known distance;

    first and second sensor means sensitive to light at said known wavelength and positioned along said first and second paths, respectively, for detecting the amplitudes of said light beams passing across said capillary tube, and generating first and second signals that represent the amplitude of the first and second light beams after passing across the capillary tube;

    processor means receiving said first and second signals and producing in real time or near real time, for at least selected ones of drops in said dispersion, drop size data based on respective times of said first and second signals and concentration data based on the detected amplitude of one of said first and second signals, said processor means being operative for calculating the velocity of said dispersion through said capillary tube by finding the differences in time of production of pulses in said first and second signals and arithmetically operating on said differences in time and said predetermined distance, including matching at least three successive pulses from said first and second signals.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×