×

Radar system with elevation-responsive PRF control, beam multiplex control, and pulse integration control responsive to azimuth angle

  • US 5,103,233 A
  • Filed: 04/16/1991
  • Issued: 04/07/1992
  • Est. Priority Date: 04/16/1991
  • Status: Expired due to Fees
First Claim
Patent Images

1. A radar system, comprising:

  • controllable signal generating means including a pulse control input port, for generating pulses of radio-frequency energy in response to pulse control signals applied to said pulse control input port;

    controllable array antenna means defining an azimuth broadside direction, said array antenna means being coupled to said signal generating means, and including a beam direction control input port, for generating pencil beams, the elevation and azimuth angles of which are controllable in response to elevation and azimuth components of beam direction control signals applied to said beam direction control input port;

    beam direction control means coupled to said beam direction control input port of said array antenna means for generating elevation and azimuth components of said beam direction control signals, for controlling said pencil beams to scan in discrete elevation and azimuth angle increments over a predetermined volume during recurrent volume scan intervals;

    PRF, beam multiplex, and pulse integration control means coupled to said signal generating means and to said beam direction control means, for generating said pulse control signals to represent a pulse recurrence frequency of said pulses radio-frequency energy, which pulse recurrence frequency is responsive to said elevation component of said beam direction control signals, and for applying said pulse control signals to said pulse control input port of said signal generating means for causing said signal generating means to produce a single pulse of said radio-frequency energy during the transmit portion of each of recurrent first and second transmit/receive intervals, and for causing said beam direction control means to apply first and second azimuth components of said beam direction control signals to said beam direction control input port of said array antenna means during said first and second transmit/receive intervals, respectively, said first and second azimuth components being selected to direct said beam in first and second spaced-apart azimuth directions, respectively, and for, during each scan of said pencil beam over said predetermined volume, controlling the total number of said pulses of radio-frequency energy generated by said signal generating means, and applied to said array antenna means at each of said discrete angle increments of said predetermined volume in response to said pulse control signals, such that the total number of said pulses of radio-frequency energy generated at each of said discrete azimuth angle increments during said scan of said pencil beam over said predetermined volume is responsive to the azimuth angle of said pencil beam measured from said azimuth broadside; and

    receiving means coupled to said array antenna means for receiving echoes of said pulses of radio-frequency energy, said receiving means including pulse separating means for separating echoes received during said recurrent first intervals from echoes received during said recurrent second intervals.

View all claims
  • 2 Assignments
Timeline View
Assignment View
    ×
    ×