×

Method and arrangement for depicting structures

  • US 5,158,090 A
  • Filed: 07/16/1990
  • Issued: 10/27/1992
  • Est. Priority Date: 11/16/1989
  • Status: Expired due to Fees
First Claim
Patent Images

1. A method for depicting structures, particularly while using a selective, local and volume-defined scattered light measurement with several IR diode light emitters and receivers which are disposed next to one another in an x-y plane as area radiators, said method comprising disposing light sources and receivers in one plane as area radiators and receivers to be guided in the z direction relative to an inhomogeneous object to be measured, emitting an IR radiation from the light sources in the NIR range with a particular radiation intensity, triggering the IR emitting diodes with a peak current in the milliamp to amp range at a pulse frequency in the kilohertz range and transmitting the light with an intensity modified in the x-y-z direction in multiplex operation, selectively illuminating the inhomogeneous object and the volume elements of the same dimensions, which are to be depicted therein or in situ, with an identical intensity, detecting the light and separating signals from said step of detecting into an AC channel and a DC channel, controlling the intensity in real time by punctually, differentially measured volume element-specific attenuation coefficients, obtaining these attenuation gradient coefficients from the same volume element and differing temporally, qualitatively and quantitatively, storing said coefficients in a computer and using them for assigning exact spatial assignment of the repeatedly measured volume elements as well as for selectively determining and depicting the volume flow of a suspension in a capillary vascular system within an overall vascular system of said object consisting of different vessels as integral light absorption quantities per unit volume and per unit time and determining the difference between the volume flow quantities of the capillary system, changing phasically and in proportion to the light absorption, subsequently analyzing the signals with real time spectral analysis for the frequency bands 0.1-4 Hz, 4-6 Hz and 8-12 Hz with discretionary displacement up to 1 kHz, and assigning the signals, obtained integrally and differentially for certain frequency bands to appropriate colors and depicting them as a function of intensity, location, time and wavelength.

View all claims
  • 2 Assignments
Timeline View
Assignment View
    ×
    ×