×

Apparatus and method for producing air cushion product

  • US 5,188,691 A
  • Filed: 04/26/1991
  • Issued: 02/23/1993
  • Est. Priority Date: 07/27/1987
  • Status: Expired due to Fees
First Claim
Patent Images

1. In an on-demand apparatus for producing air-cushioning dunnage from two sources of flexible thermoplastic film, said flexible film of the type which may be combined to provide isolated fully air-filled cells, said apparatus comprising:

  • a means for holding a source of a first film, said first film being a thermoplastic material having at least thermoforming and heat-welding properties when heated to a predetermined temperature;

    a means for holding a source of a second film, said second film being a thermoplastic material having at least heat-welding properties when heated to a predetermined temperature;

    means for independently feeding a web of said first film and a web of said second film to said apparatus;

    means for softening a preselected portion of said first film to a temperature sufficient to provide said first film with said thermoforming properties;

    a forming roller of a selected diameter, said forming roller including a central core and an outer surface, said outer surface having a plurality of selectively shaped and spaced cavities therein, said forming roller being adapted to receive said heat-softened portion of said first film at a first point with respect to said forming roller, said forming roller being made of a conductive material and further adapted for being fully and constantly cooled to a predetermined cold temperature at its central core first and conducting said cold temperature to its outer surface;

    means for creating a vacuum within said cavities located within a forming portion of said forming roller, said created vacuum being sufficient to draw said heat-softened portion of said first film into said cavities, said drawn first film taking a shape similar to the shape of said cavities within said forming portion of said forming roller;

    a heated pressure roller selectively positioned adjacent to said forming roller, said heated pressure roller being adapted to receive said second film so that said first film and said second film are in contact at a contact portion of said adjacent rollers, said contact portion being located at a second point with respect to said forming roller, heat generating from said heated pressure roller conducts through said second film and said first film in a direction towards said core of said forming roller, said heated pressure roller further adapted for heating said second film substantially to a heat-weld temperature prior to said second film supply reaching said contact portion of said heated pressure roller;

    a thermo-resistive layer including silica particles dispersed in a rubber base for providing a predetermined conductivity, said thermo-resistive layer having a predetermined thickness, said thermo-resitive layer selectively covering said outer surface of said forming roller around said cavities, said thermo-resistive layer being fixedly attached while simultaneously being in full contact with said outer surface around said cavities said thermo-resistive layer being such that said conduction of said generated heat energy from said adjacent heated pressure roller toward said cold core of said forming roller is delayed for a predetermined duration at said thermo-resistive layer on said outer surface of said forming roller around said cavities, said duration of said heat conduction delay being controlled by the thickness and conductivity of said thermo-resistive layer, said duration being sufficient to heat any undrawn portions of said first film to said heat-weld temperature so that said first film is heat-welded to said second film substantially at said contact portion of said adjacent rollers, said duration of said delay ending after said heat-weld is rotated by and with said forming roller for a predetermined distance beyond said contact point, said conductivity of said thermo-resistive layer thereafter allowing residual heat energy in said heat weld to continue towards said cold core of said forming roller;

    said predetermined thickness of said thermo-resistive layer providing for a major portion of said shape of said drawn portion of said first film to be only in contact with the shape of its associated cavity of said plurality of shaped and spaced cavities in said forming roller;

    wherein said first point is sufficiently distant from said second point for cooling only said drawn portion of said first film and air interior of said cells formed in said first film to substantially a cold condition, as and when said major portion of said shape of said drawn portion is in contact with said cavity, said cold condition providing for more dense air to fill said cells and subsequently providing a fully inflated air cell;

    means for driving said forming roller and said heated pressure roller at a selected rate of rotation;

    means for said fully cooling of said forming roller to said predetermined cold temperature, said fully cooling means adapted for constantly cooling said air in said cells, said fully cooling means further adapted for subsequently cooling said thermo-resistive layer and said heat-welded portion of said first film and said second film to a temperature sufficient to easily remove said dunnage from said forming roller; and

    a second cooling means for removing any residual heat from a major exposed surface of said second film of said finished cushioning dunnage subsequent to said easy removal and prior to exiting the apparatus, said second cooling means providing for the minimizing of any thermal distortion of said second film.

View all claims
  • 0 Assignments
Timeline View
Assignment View
    ×
    ×