×

Automatic tracking astronomical globe

  • US 5,344,325 A
  • Filed: 05/17/1993
  • Issued: 09/06/1994
  • Est. Priority Date: 05/17/1993
  • Status: Expired due to Fees
First Claim
Patent Images

1. An automatic tracking astronomical globe comprising a mount with a base disposed on its bottom portion, an annular frame with an open inner periphery secured to the top portion of said mount in a vertical position, an azimuth circle secured perpendicularly across a diameter of said annular frame in a horizontal position, and a celestial globe with an enclosed, concentric terrestial globe disposed concentrically within said annular frame and said azimuth circle, wherein:

  • said terrestial globe has lines, lettering, and artwork formed on its surface denoting nations, bodies of water, borders, and other features as found on a conventional earth globe;

    said celestial globe is made from a transparent material and has points, lines, lettering, and other features formed on its outer surface denoting stellar constellations and prominent celestial objects;

    marking formed around the periphery of said annular frame, on one face thereof, define a latitude scale with units of degrees;

    an annular polar axle yoke is rotatably secured within said annular frame in a concentric position;

    a polar axle extends through the north and south celestial poles of said celestial globe, and through the north and south poles of said terrestial globe, with one end thereof rotatably secured to a first bearing and the opposite end thereof rotatably secured to a second bearing, said first bearing and said second bearing are secured to said polar axle yoke at diametrically opposed positions, with said first bearing disposed opposite the north celestial pole of said celestial globe and said second bearing disposed opposite the south celestial pole of said celestial globe;

    said polar axle is engaged with said celestial globe by a clutch means secured to the region of the north celestial pole of said celestial globe, said clutch means allows manual rotation of said celestial globe;

    a concentric sleeve covers a major portion of the length of said polar axle, with one end of said sleeve extending from and securing to the north pole of said terrestial globe, passing through the south pole thereof, the opposite end of said sleeve securing to the rotating block of a friction bearing, said friction bearing being disposed between the south celestial pole of said celestial globe and said second bearing, the fixed block of said friction bearing is disposed to the rear of said rotating block opposite said second bearing and is secured to said polar axle yoke, a knurled rotation knob is secured to the front of said rotating block and protrudes from the open inner periphery of said annular frame enabling manual rotation of said terrestial globe;

    a rotation means, including a motor and an output shaft, are disposed within the lower portion of said mount;

    said celestial globe is rotated by said rotation means by means of a globe rotation drive mechanism comprising a polar axle gear secured to one end of said polar axle in proximity to said first bearing, a ring gear rotatably secured within said polar axle yoke in a concentric position, a drive gear having a shaft secured thereto rotatably secured to the bottom portion of said annular frame with the shaft of said drive gear extending through the bottom thereof into said mount, and a clutch means disposed within said mount between the shaft of said drive gear and the output shaft of said rotation means;

    said clutch means engages the output shaft of said rotation means with the shaft of said drive gear when engaged by a decoupling and raising mechanism, said drive gear being engaged with said ring gear and said ring gear being engaged with said polar axle gear;

    a circumferential gear is formed around the outer periphery of said polar axle yoke, a coupler gear rotatably secured within said mount engages said circumferential gear through an opening formed on the bottom portion of said annular frame, a worm gear disposed within said mount is secured to a common shaft with said coupler gear;

    a worm, disposed within said mount and secured to a shaft with one end thereof pivotably secured to an inner wall of said mount and the other end extending through a slot formed on the outer wall of said mount to secure to an external latitude adjustment knob, is engaged with said worm gear when pivoted upwards by means of said decoupling and raising mechanism, enabling said polar axle yoke to be rotated about an axis perpendicular with said annular frame by manually rotating said tilt adjustment knob;

    said decoupling and raising mechanism disengages said clutch means, between said output shaft and said drive gear shaft, when raising said worm to engage said worm gear, and engages said clutch means when said worm gear is lowered;

    a plurality of gear teeth are formed around the equatorial circle of said terrestial globe defining an equatorial gear thereon;

    said celestial globe is formed in two halves, in a north celestial hemisphere and a south celestial hemisphere, the circular rims of said north and south celestial hemispheres are parallel with and in proximity to the ecliptic circle of said celestial globe, said north and south celestial hemispheres being separated by a small gap;

    a first thin, annular, internally toothed ecliptic gear and a second thin, annular, internally toothed ecliptic gear both have a diameter nearly equal with that of said celestial globe, said first ecliptic gear and said second ecliptic gear being rotatably secured within said gap between said north and south celestial hemispheres, with said second ecliptic gear being disposed between said first ecliptic gear and said north celestial hemisphere;

    a pair of drive boxes are secured to the inner surface of said celestial globe at diametrically opposed positions, each said drive box having a similar solar and lunar drive mechanism disposed within;

    each said solar and lunar drive mechanism comprises an epicyclic gear engaged with said equatorial gear, a first set of coupling gears and a second set of coupling gears, a solar drive gear engaged with said first ecliptic gear, and a lunar drive gear engaged with said second ecliptic gear;

    said equatorial gear of each said solar and lunar drive mechanism is engaged with a said solar drive gear thereof through said first set of coupling gears, and engaged with said lunar drive gear thereof through said second set of coupling gears;

    clockwise rotation of said celestial globe about stationary said terrestial globe causes said first ecliptic gear and said second ecliptic gear to rotate in a counter clockwise direction, said first ecliptic gear completing one revolution for approximately every 366.261 revolutions of said celestial globe and said second ecliptic gear completing one revolution for approximately every 27.398 revolutions of said celestial globe;

    a solar marker with a securing arm is disposed over the outer periphery of said first ecliptic gear, said securing arm of said solar marker being slidingly secured within a circumferential first retaining groove formed around the outer peripheral portion of said first ecliptic gear, likewise a lunar marker with a securing arm is disposed over the outer periphery of said second ecliptic gear, said securing arm of said lunar marker being slidingly secured within a circumferential second retaining groove formed around the outer peripheral portion of said second ecliptic gear;

    said solar marker and said lunar marker rotate about and in proximity to the circle of the ecliptic of said celestial globe, being carried by the rotation of respective said first ecliptic gear and said second ecliptic gear, said solar marker and said lunar marker can be positioned about the circle of the ecliptic of said celestial globe by manually sliding said solar marker and said lunar marker along respective said first groove and said second groove;

    whereby, said celestial globe completes one revolution about said terrestial globe in a clockwise direction relative to the north celestial pole thereof in approximately the period of a sidereal day, said solar marker completes one revolution in a counter clockwise direction about said celestial globe in approximately the period of a sidereal year, and said lunar marker completes one revolution about said celestial globe in a counter clockwise direction approximately in the period of a sidereal month;

    with said polar axle yoke rotated to align said polar axle with the latitude mark on said latitude scale corresponding to the latitude of a user'"'"'s location, said celestial globe manually rotated to a proper initial orientation, and said solar and lunar markers moved to proper respective initial positions, the astronomical globe of the present invention will show the positions of the sun, moon, and celestial objects, represented on said celestial globe, relative to a user'"'"'s location at the time of observation.

View all claims
  • 0 Assignments
Timeline View
Assignment View
    ×
    ×