×

Computerized electronic prosthesis apparatus and method

  • US 5,413,611 A
  • Filed: 07/21/1992
  • Issued: 05/09/1995
  • Est. Priority Date: 07/21/1992
  • Status: Expired due to Fees
First Claim
Patent Images

1. A computerized electronic prosthesis apparatus having selectively configurable operating parameters corresponding to the particular capabilities and requirements of an individual wearer comprising:

  • an articulated prosthesis adapted to be worn by a living being as a replacement for an amputated limb and capable of exerting a mechanical force;

    programmable microcomputer means in said prosthesis connected with a power supply and including a microprocessor, memory, input/output circuitry for receiving signals and producing an output drive signal and an output vibratory signal, signal processing means, drivers, and controllers;

    electrode means on said prosthesis operatively connected with said microcomputer and adapted to contact certain muscles of the remnant portion of the limb to produce an electric command signal responsive to a myoelectric signal created by the wearer contracting and relaxing certain muscles in the remnant portion, the threshold voltage points at which said microcomputer will acknowledge a valid electric command signal while eliminating nuisance activations due to movement and environmental noise selectively configured and stored in said microcomputer memory;

    drive means in said prosthesis operatively connected with said microcomputer for causing said prosthesis to exert a mechanical force responsive and proportional to said electric command signal, the speed of said drive means and value of said mechanical force exerted by said prosthesis selectively configured relative to the intensity of the myoelectric signal generated by the wearer and stored in said microcomputer memory;

    sensor means on said prosthesis operatively connected with said microcomputer for detecting the mechanical force exerted by said prosthesis and producing an electric sensor signal responsive and proportional thereto, the threshold voltage points at which said microcomputer will acknowledge a valid electric sensor signal selectively configured and stored in said microcomputer memory; and

    vibratory means on said prosthesis opperatively connected with said microcomputer and adapted to engage the remnant portion of the limb adjacent sensory nerve endings in the skin of the remnant portion of the limb and transmit vibrations which stimulate the nerve endings to produce a feedback signal perceptible to the wearer which is responsive to and indicative of the mechanical force exerted, said vibrations having frequency, amplitude, and modulation characteristics, the operating values of which are selectively configured and stored in said microcomputer memory;

    upon said microcomputer receiving a valid said electric command signal, said microcomputer producing an output drive signal to operate said drive means to cause said prosthesis to exert a mechanical force relative to the intensity of the myoelectric signal generated by the wearer, and upon said microcomputer receiving a sensor signal exceeding said threshold voltage points, said microcomputer producing an output vibratory signal causing said vibratory means to transmit vibrations which stimulate the nerve endings to produce feedback signals perceptible to the wearer which are indicative of the mechanical force being exerted; and

    said command signal, said drive means, said sensor means, and said vibratory means each being selectively adjustable to compensate for changes in muscle strength, sensitivity, usage, and other conditions affecting operability;

    a communication port on said prosthesis operatively connected with said microcomputer and adapted to be releasably connected to peripheral devices for exchanging data, monitoring, diagnosing, adjusting, correcting, or setting the operational parameters of said prosthesis; and

    a modem adapted for connection to a telephone and said communications port for data communication between said microcomputer in said prosthesis and a local or remote computer, whereby the wearer can call the manufacturer of said prosthesis, connect said modem into the telephone line and said communication port on said prosthesis, and the manufacturer can then communicate directly with said microcomputer in said prosthesis via telephone to perform diagnostic tests, determine where and if there is a problem or a power failure, and correct problems via the telephone by making corrections to the operating parameters of said prosthesis.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×