×

DC cancellation and restoration in receiving apparatus

  • US 5,442,655 A
  • Filed: 05/27/1993
  • Issued: 08/15/1995
  • Est. Priority Date: 06/03/1992
  • Status: Expired due to Term
First Claim
Patent Images

1. A method of processing a received signal comprising a carrier wave modulated with digital data signals, said method comprising the steps of:

  • (a) demodulating the received signal to produce a set of digital baseband signal-value pairs, each pair being comprised of an inphase signal value and a corresponding quadrature signal value such that, when plotted on an I-Q diagram with the inphase signal value of each pair denoting distance of a plotted point from a Q-axis, and the corresponding quadrature signal value of that pair denoting distance of said plotted point from an I-axis that is orthogonal to said Q-axis, said plotted points would lie substantially on a first circle whose centre is offset from the origin of the diagram, said origin being at the intersection of said I- and Q-axes;

    (b) averaging said inphase signal values of said pairs to produce an I-direction mean value, and averaging said quadrature signal values of said pairs to produce a Q-direction mean value;

    (c) subtracting said I-direction mean value and said Q-direction mean value respectively from the inphase signal value and the quadrature signal value of each of said signal-value pairs so as to produce a set of adjusted signal-value pairs which, when plotted on said I-Q diagram, would produce a new set of plotted points lying substantially on a second circle such that said origin lies within the second circle;

    (d) defining first, second, third and fourth regions of the I-Q diagram, the first and third regions being symmetrical to one another with respect to said Q-axis, and the second and fourth regions being symmetrical to one another with respect to said I-axis;

    (e) determining for each of the said first and third regions, an average distance between said Q-axis and the plotted points of the new set that are located within the region concerned, and using a difference between the average distances of the first and third regions to produce an I-direction shift which, when subtracted from the inphase signal values of the points of the new set, causes the centre of the second circle to move closer to said Q-axis;

    (f) determinings for each of the said second and fourth regions, the average distance between said I-axis and the plotted points of the new set that are located within the region concerned, and using a difference between the average distances of the second and fourth regions, to produce a Q-direction shift value which, when subtracted from the quadrature signal values of the plotted points of the new set, would cause the centre of the second circle to move closer to said I-axis; and

    (g) subtracting said I-direction shift value from each of said inphase signal values of the plotted points of said new set, and subtracting said quadrature signal values of said plotted points, and delivering the resulting inphase and quadrature values as output signals.

View all claims
  • 3 Assignments
Timeline View
Assignment View
    ×
    ×