×

Process for making copper metal powder, copper oxides and copper foil

  • US 5,520,792 A
  • Filed: 03/30/1995
  • Issued: 05/28/1996
  • Est. Priority Date: 04/19/1993
  • Status: Expired due to Term
First Claim
Patent Images

1. A process for making copper metal powder from a copper-bearing material, said process including sequential steps (A), (B-1), (C-1), (B-2), (C-2), (E), (F) and (G), said process comprising:

  • (A) contacting said copper-bearing material with an effective amount of at least one aqueous leaching solution to dissolve copper ions in said leaching solution and form a copper-rich aqueous leaching solution;

    (B-1) contacting said copper-rich aqueous leaching solution with an effective amount of at least one copper-bearing water-insoluble extractant from step (C-2) to transfer copper ions from said copper-rich aqueous leaching solution to said copper-bearing extractant to form a copper-rich extractant and a first copper-depleted aqueous leaching solution;

    said extractant comprising (i) at least one oxime characterized by a hydrocarbon linkage with at least one --OH group and at least one ═

    NOH group attached to different carbon atoms on said hydrocarbon linkage, (ii) at least one betadiketone, or (iii) at least one ion-exchange resin;

    (C-1) separating said copper-rich extractant from said first copper-depleted aqueous leaching solution, advancing said copper-rich extractant to step (D);

    (B-2) contacting said first copper-depleted aqueous leaching solution from step (C-1) with an effective amount of at least one copper-depleted extractant from step (E) to transfer copper ions from said first copper-depleted aqueous leaching solution to said copper-depleted extractant to form a copper-bearing extractant and a second copper-depleted aqueous leaching solution;

    (C-2) separating said copper-bearing extractant from said second copper-depleted aqueous leaching solution, recirculating said copper-bearing extractant to step (B-1);

    (D) contacting said copper-rich extractant from step (C-1) with an effective amount of at least one aqueous stripping solution to transfer copper ions from said copper-rich extractant to said stripping solution to form a first electrolyte solution and a copper-depleted extractant;

    (E) separating said first electrolyte solution from said copper-depleted extractant, recirculating said copper-depleted extractant to step (B-2);

    (F) advancing said first electrolyte solution to an electrolytic cell equipped with at least one first insoluble anode and at least one first cathode, adding benzotriazole to said first electrolyte solution, and applying an effective amount of voltage across said first anode and said first cathode to deposit copper powder on said first cathode, the amount of benzotriazole added being sufficient to produce as plated copper powder having an apparent density in the range of about 1 to about 4 g/cm3, said first electrolyte solution containing organic impurities carried over from one or more of said contacting steps; and

    (G) removing copper metal powder from said first cathode.

View all claims
  • 2 Assignments
Timeline View
Assignment View
    ×
    ×