×

Single step coarse registration and inspection of circular objects

  • US 5,818,443 A
  • Filed: 05/06/1996
  • Issued: 10/06/1998
  • Est. Priority Date: 05/06/1996
  • Status: Expired due to Term
First Claim
Patent Images

1. A method of inspecting a circular object to effect angular displacement determination and defect detection, using a machine vision system capable of storing a train-time image of a standard sample of said circular object and capturing a run-time image of said circular object to compare against train-time pixel information, said method comprising the steps of:

  • providing a geometric partition model of said circular object, said geometric partition model comprising spatial bins, each of said spatial bins comprising a plurality of pixels, each of said plurality of pixels being assigned one of a plurality of said labels corresponding to a respective spatial bin;

    generating a train-time spatial histogram of said train-time image in accordance with said geometric partition model wherein each pixel in said train-time image is assigned a train-time spatial histogram label selected from one of said plurality of labels, said train-time spatial histogram comprising a plurality of train-time sums of grey level values of pixels of said train-time image in respective ones of said spatial bins;

    generating a run-time spatial histogram of said run-time image in accordance with said geometric partition model wherein each pixel in said run-time image is assigned a run-time spatial histogram label selected from one of said plurality of labels designating said respective one of said spatial bins, said run-time spatial histogram comprising a plurality of run-time sums of grey level values of pixels of said run-time image in respective ones of said spatial bins;

    determining an estimated angular displacement of said run-time image relative to said train-time image to provide an aligned run-time spatial histogram in accordance with said geometric partition model, that is aligned with said train-time spatial histogram in accordance with said estimated angular displacement; and

    comparing said train-time spatial histogram and said aligned run-time spatial histogram to determine a difference therebetween to provide an estimate of defects in said circular object.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×