×

Method of encoding a digital image using adaptive partitioning in an iterated transformation system

  • US 5,862,262 A
  • Filed: 03/30/1992
  • Issued: 01/19/1999
  • Est. Priority Date: 03/30/1992
  • Status: Expired due to Fees
First Claim
Patent Images

1. A method of data compression for compressed data storage or transmission over a data link of compressed data representing an image, said image being comprised of an array of pixels, each pixel having a position in said array, comprising the steps of:

  • acquiring a digital image that is a digital representation of said image, said digital image being represented by an array of pixel values defining an entire image area, each pixel value being defined by a three-dimensional vector identifying the position of the pixel in the array and an intensity level of the pixel;

    defining at least one partition in said digital representation of said image based upon the intensity levels of each of said pixels in said image area so as to create a plurality of ranges which are to be encoded, each range being a section of said entire image area, there being a union of said ranges, wherein said union of said ranges tile said entire image area, thereby deriving a digital representation of each said partition;

    using said digital representation of each said partition to identify each partitioned image area as a member of a set of domains;

    generating for each range which is to be encoded a transformation for each member of said set of domains, said transformation comprising positional scaling coefficients and an intensity scaling coefficient, and further comprising positional offset coefficients and intensity offset coefficients;

    using each said transformation to transform the corresponding member of said set of domains into a corresponding transformed digital image scaled in size and intensity to map onto each range which is to be encoded;

    optimizing each said transformation in terms of the intensity scaling and offset coefficients, wherein an optimized transformation is indicative of a corresponding optimized transformed digital image for the associated range;

    comparing each said optimized transformed digital image with the associated range to provide error data as a function of the difference therebetween;

    redefining each range which is to be encoded as an encoded range when at least one of said error data for the range is within predefined limits and adding said encoded range to said set of domains;

    defining for each range which is still to be encoded following said step of redefining at least one additional partition in said digital representation of said range which is still to be encoded based upon the intensity level of each of said pixels in said image area encompassed by said range which is still to be encoded so as to create a plurality of non-overlapping image areas thereby deriving a digital representation of each said additional partition;

    adding each range which is still to be encoded following said redefining step to said set of domains;

    creating a new set of ranges which are to be encoded comprising said plurality of non-overlapping image areas;

    repeating said steps of generating using each said transformation, optimizing, comparing, redefining, defining, adding and creating to select a set of encoded ranges, domains and corresponding optimized transformations, wherein said set of encoded ranges form a non-overlapping tiling of said entire image area such that some iterate of the set of selected set of transformations is contractive so as to create a digital representation of the entire partition comprising each said partition and each said additional partition; and

    storing in an addressable memory information that represents said image by said digital representation of said entire partition, said set of encoded ranges, domains and corresponding optimized transformations.

View all claims
  • 2 Assignments
Timeline View
Assignment View
    ×
    ×