×

System and method for measuring hydrocarbon conversion efficiency of a catalytic converter

  • US 5,941,928 A
  • Filed: 07/31/1997
  • Issued: 08/24/1999
  • Est. Priority Date: 07/31/1997
  • Status: Expired due to Fees
First Claim
Patent Images

1. A method for measuring hydrocarbon conversion efficiency of a catalytic converter coupled to an engine exhausting a combusted gas stream comprised of hydrocarbon gas and other combustible gasses to the catalytic converter, the catalytic converter exhausting a catalyzed gas stream dependent thereon, the method comprising steps of:

  • sensing the combusted gas stream and providing a total-combustible gas input signal dependent thereon, the total-combustible gas input signal having a magnitude comprised of a first portion, dependent on a concentration of the hydrocarbon gas in the combusted gas stream, and a second portion, dependent on a concentration of the other combustible gasses in the combusted gas stream, where a magnitude relationship between the first portion and the second portion is variable when the combusted gas stream transitions into a region on the rich side of stoichiometry;

    filtering the total-combustible input gas signal and providing a filtered total-combustible gas input signal dependent thereon, the filtered total-combustible gas input signal having a magnitude comprised of a first portion, dependent on the first portion of the total-combustible gas input signal, and a second portion, dependent on the second portion of the total-combustible gas signal, wherein a magnitude relationship between the first portion and the second portion of the filtered total-combustible gas input signal is substantially constant when the combusted gas stream transitions into the region on the rich-side of stoichiometry;

    sensing the catalyzed gas stream and providing a total-combustible gas output signal dependent thereon, the total-combustible gas output signal having a magnitude comprised of a first portion, dependent on a concentration of the hydrocarbon gas in the catalyzed gas stream, and a second portion, dependent on a concentration of the other combustible gasses in the catalyzed gas stream, where a magnitude relationship between the first portion and the second portion is variable when the catalyzed gas stream transitions into a region on the rich side of stoichiometry;

    filtering the total-combustible gas output signal and providing a filtered total-combustible gas output signal dependent thereon, the filtered total-combustible gas output signal having a magnitude comprised of a first portion, dependent on the first portion of the total-combustible gas output signal, and a second portion, dependent on the second portion of the total-combustible gas output signal, wherein a magnitude relationship between the first portion and the second portion of the filtered total-combustible gas output signal is substantially constant when the catalyzed gas stream transitions into the region on the rich-side of stoichiometry; and

    computing an instantaneous catalyst efficiency metric dependent on the filtered total-combustible gas input signal and the filtered total-combustible gas output signal.

View all claims
  • 2 Assignments
Timeline View
Assignment View
    ×
    ×