×

Multiple axes fiber placement machine

  • US 6,096,164 A
  • Filed: 08/17/1998
  • Issued: 08/01/2000
  • Est. Priority Date: 12/19/1990
  • Status: Expired due to Term
First Claim
Patent Images

1. A fiber placement machine for laying down tows fiber on the shaped form of a mandrel, said fiber placement machine located on a floor, said fiber placement machine comprising:

  • a first plurality of linear ways having an axis, said first plurality of linear ways attached to said floor;

    a headstock mounted on a portion of said first plurality of linear ways, said headstock including rotation apparatus for rotating said mandrel about an axis thereof and a spindle connected to the rotation apparatus and to a portion of said mandrel, the spindle having a central rotation axis, the central rotation axis of the spindle being parallel to the axis of the first plurality of linear ways;

    a tailstock movably mounted on another portion of the first plurality of linear ways, the tailstock including a rotational bearing having a central rotation axis thereof located on substantially the same central rotation axis of the spindle of the headstock, the tailstock connected to a portion of said mandrel, the central rotation axis of the rotational bearing being parallel to the axis of the first plurality of linear ways;

    a second plurality of ways having an axis extending substantially parallel to the first plurality of ways, said second plurality of ways attached directly to said floor;

    a carriage movably mounted on the second plurality of ways, the carriage movable in a direction substantially parallel to the first plurality of linear ways;

    a third plurality of ways mounted on the carriage, extending thereabove, and substantially perpendicular to the first plurality of linear ways and the second plurality of ways;

    a cross slide mounted on and extending above the third plurality of ways and movably connected thereto, the cross slide movable towards and away from said mandrel in a direction substantially perpendicular to an axis thereof extending through the central rotation axis of the spindle of the headstock and the central rotation axis of the rotation bearing of said tailstock, said cross slide having a first end portion, a center portion, and a second end portion;

    a base mounted above the cross slide in substantially the center portion of the cross slide and connected thereto, the base having a top portion and a bottom portion, the bottom portion mounted above the cross slide in the center portion of the cross slide;

    trunnion apparatus mounted on a portion of the top portion of the cross slide and rotatably connected thereto of the base mounted above the cross slide, the trunnion apparatus having an axis of rotation substantially parallel to the first plurality of linear ways and the second plurality of ways;

    an arm attached to the trunnion apparatus in a position which varies with respect to the distance between the axis of rotation of the trunnion apparatus and the central rotation axis of the spindle of the headstock and the central rotation axis of the rotational bearing of the tailstock, the arm having two sides and having an axis extending substantially perpendicular to the axis of rotation of the trunnion apparatus and rotatable thereabout, the arm having a first portion having an end and a second portion having an end, the first portion of the arm extending from the trunnion apparatus towards said mandrel terminating in an end thereof, the first portion of the arm extending from the trunnion apparatus towards said mandrel having a rotational axis, the second portion of the arm extending away from the trunnion apparatus;

    robotic wrist connected to the end of the first portion of the arm extending from the trunnion apparatus towards said mandrel, the robotic wrist having a rotational motion substantially about the rotation axis of the first portion of the arm extending from the trunnion apparatus towards said mandrel, having a rotational motion substantially about the axis of rotation of the trunnion apparatus, and a rotation motion about an axis substantially perpendicular to the axis of rotation of the trunnion apparatus;

    a delivery head attached to the robotic wrist movable towards and away from said mandrel, movable in an up and down motion with the portion of the arm attached to the trunnion apparatus extending towards said mandrel, movable about the rotational axis of the first portion of the arm extending from the trunnion apparatus towards said mandrel, movable about the axis of rotation of the trunnion apparatus, and movable about an axis substantially perpendicular to the axis of rotation of the trunnion apparatus, the delivery head having a plurality of zones therein which said tows of said fiber pass therethrough, the delivery head having temperature control apparatus for controlling the temperature of said tows while passing through the plurality of zones, the delivery head including a plurality of spreader bars located therein in a serpentine arrangement in a holder, each spreader bar of the plurality of spreader bars being internally heated, the angle of contact of a tow of said tows with said each spreader bar of the plurality of spreader bars being variable by the rotation of the holder, the delivery head having a cooling bar located after the plurality of spreader bars for the cooling of a tow of said tows after the contact thereof with the plurality of spreader bars;

    a fiber supply creel assemble having a plurality of mounting locations for spools of fiber therein, said fiber supply creel assembly attached to a portion of the arm having a portion of the mounting locations for spools of fiber of said fiber creel assembly attached to and supported by the first portion of the arm and having a portion of the mounting locations for fiber of said fiber creel assembly attached to and supported by the second portion of the arm, the fiber supply creel assembly having a side located on each side of the arm, the fiber supply creel including;

    a plurality of spindles, each spindle of the plurality of spindles driven by a motor and held in bearings, said seach spindle of the plurality of spindles driven for a filament of fiber from a spool of fiber to be pulled therefrom with a predetermined amount of fiber tension and for taking up slack in the filament of fiber of a spool of fiber;

    a plurality of spools of fiber mounted on the plurality of spindles, said each spool of the plurality of spools of fiber having a filament of fiber thereon, said each spindle of the plurality of spindles being motorized and held in bearings, said each spindle of the plurality of spindles driven for a filament of fiber from a spool of fiber of the plurality of spools of fiber to be pulled therefrom with a predetermined amount of fiber tension and for taking up slack in the filament of fiber of said spool of fiber of the plurality of spools of fiber; and

    an enclosed cabinet enclosing therein the plurality of spindles and the plurality of spools of fiber, said cabinet having a plurality of doors therein for the access of the plurality of spools of fiber mounted on the plurality of spindles, said cabinet having a first portion supported by the first portion of the arm and having a second portion supported by the second portion of the arm, the second portion of the cabinet extending beyond the end of the second portion of the arm having a plurality of the plurality of spindles located beyond the end of the second portion of the arm; and

    control apparatus for said machine for controlling the positioning of said delivery head for said laying of said tows of fiber.

View all claims
  • 12 Assignments
Timeline View
Assignment View
    ×
    ×