×

Method and device for electrochemical immunoassay of multiple analytes

  • US 6,294,062 B1
  • Filed: 05/28/1999
  • Issued: 09/25/2001
  • Est. Priority Date: 06/01/1998
  • Status: Expired
First Claim
Patent Images

1. A method for measuring the concentration of one or more analytes in a liquid sample, said method comprisingcontacting a volume of said liquid sample with predetermined amounts of at least a first and second redox reversible species, each respective species having a redox potential differing by at least 50 millivolts from that of each other species, at least one species comprising a liquid sample diffusible conjugate of a ligand analog of an analyte in the liquid sample and a redox reversible label, said conjugate capable of competitive binding with a specific binding partner for said analyte, and a predetermined amount of at least one specific binding partner for each analyte to be measured;

  • and electrochemically determining the concentration of each of said diffusible redox-reversible species in the liquid sample by contacting said sample with an electrode structure including a reference electrode and at least first and second working electrodes dimensioned to allow diffusional recycling of the diffusible redox reversible species in the sample when a predetermined redox-reversible-species-dependent cathodic potential is applied to one working electrode and a predetermined redox-reversible-species-dependent anodic potential is applied to a second working electrode, said diffusional recycling of said species being sufficient to sustain a measurable current through said sample, applying a first cathodic potential to the first working electrode and a first anodic potential to the second working electrode, said first cathodic and anodic potentials corresponding to those respective potentials necessary to establish current flow through the sample due to diffusional recycling of the first redox reversible species without significant interference from said second redox reversible species, measuring current flow at said first anodic and cathodic potentials, applying a second cathodic potential to said first or second working electrode and a second anodic potential to the other working electrode, said second cathodic and anodic potential corresponding to those respective potentials necessary to establish current flow through the sample due to diffusional recycling of the second redox-reversible-species without significant interference from the first redox reversible species, measuring current flow at said second anodic and cathodic potentials, and correlating the respective measured current flows to that for known concentrations of the respective diffusible redox reversible species.

View all claims
  • 4 Assignments
Timeline View
Assignment View
    ×
    ×