×

Read-out circuit for active matrix imaging arrays

  • US 6,300,977 B1
  • Filed: 12/02/1997
  • Issued: 10/09/2001
  • Est. Priority Date: 04/07/1995
  • Status: Expired due to Fees
First Claim
Patent Images

1. A method of operating an imaging array including a plurality of pixels arranged in rows and columns, each of said pixels being bounded by at least one data line and at least two control lines connected to a scanning control circuit, and each of said pixels including at least two pixel electrodes and at least two switching means, a first one of said pixel electrodes being connected to said at least one data line via a first one of said switching means, said first one of said switching means having a control input thereof connected to a first one of said control lines for receiving a first scanning pulse from said scanning control circuit for transferring charge on said first one of said pixel electrodes to said at least one data line, a second one of said pixel electrodes being connected to said first one of said pixel electrodes via a second one of said switching means, said second one of said switching means having a control input thereof connected to a second one of said control lines for receiving a second scanning pulse from said control circuit for transferring charge on said second one of said pixel electrodes to said first one of said pixel electrodes after said charge on said first one of said pixel electrodes has been transferred to said at least one data line, the method comprising the steps of:

  • a) scanning successive ones of said control lines such that for each of said pixels charge carried by said first one of said pixel electrodes is transferred to said at least one data line in response to scanning said first one of said at least two control lines, and a portion of charge carried by said second one of said pixel electrodes is transferred to said first one of said pixel electrodes in response to scanning said second one of said control lines;

    b) scanning successive ones of said control lines a second time such that said portion of charge transferred from said second one of said pixel electrodes to said first one of said pixel electrodes is transferred to said at least one data line; and

    c) multiplying said portion of charge transferred to said at least one data line by a correction factor proportional to capacitance ratio between said first and second pixel electrodes, whereby each of said pixels functions as a pixel pair defined by said first and second pixel electrodes.

View all claims
  • 11 Assignments
Timeline View
Assignment View
    ×
    ×