×

Microfluidic device and system with improved sample handling

  • US 6,730,206 B2
  • Filed: 03/17/2001
  • Issued: 05/04/2004
  • Est. Priority Date: 03/17/2000
  • Status: Expired due to Term
First Claim
Patent Images

1. An improved microfluidics device having a supply channel for holding a sample, a drain channel, and a separation channel for containing an electrolyte buffer, where said supply and drain channels intersect said separation channel at a supply port and a drain port, respectively, which ports define a sample-volume region in the separation channel between the two ports, and first, second, third, and fourth reservoirs communicating with the supply channel, the drain channel, and upstream and downstream ends of the separation channel, respectively, such that applying an electrokinetic or pneumatic force between the first and second reservoirs is effective to move a sample from the first reservoir through the sample-volume region in the separation channel and into the drain channel, and applying an electrokinetic or pneumatic force between the third and fourth reservoirs is effective to move a sample in the sample-volume region in the separation channel in a downstream direction, the improvement being an improvement for sample volume control, comprising at least one of the following channel configurations:

  • (a) first and second peripheral channels connecting the supply channel to upstream and downstream regions of the separation channel, respectively, on opposite sides of the sample-volume region, such that applying an electrokinetic or pneumatic force between the first and second reservoirs is effective to move a sample from the first reservoir through the supply channel, the sample-volume region in the separation channel and into the drain channel, via the supply and drain channels, and to move electrolyte solution contained in the first and second peripheral channels and upstream and downstream regions of the separation channel toward the sample-volume region and into the drain channel, thereby shaping the sample in the sample-volume region during sample loading; and

    (b) said second peripheral channel peripheral channel connecting the supply channel and the drain channel, respectively, to a downstream region of the separation channel, respectively, such that applying an electrokinetic or pneumatic force between the third and fourth reservoirs is effective to move a sample in the sample-volume region in the separation channel in a downstream direction, and to move electrolyte solution contained in the upstream region of the separation channel through the second and third peripheral channels, thereby moving sample contained in the supply and drain channels away from the sample-volume region of the separation channel during sample injection.

View all claims
  • 2 Assignments
Timeline View
Assignment View
    ×
    ×