×

Magnetic coupling using halbach type magnet array

  • US 6,841,910 B2
  • Filed: 10/02/2002
  • Issued: 01/11/2005
  • Est. Priority Date: 10/02/2002
  • Status: Expired due to Fees
First Claim
Patent Images

1. A magnetic coupling comprisinga first annular permanent magnet array comprised of a plurality of separately magnetized permanent magnet segments in magnetic flux transmitting contact with each other angularly positioned about the array, a second annular permanent magnet array comprised of a plurality of separately magnetized permanent magnet segments in magnetic flux transmitting contact with each other angularly positioned about the array, said second array being closely spaced from and positioned relative to the first array so as to form a uniform annular gap therebetween, said permanent magnet segments of each array including at least one south-pole segment magnetized in a direction extending transversely of said gap so as to create a magnetic south pole at a face of the south-pole segment at the gap and including at least one north-pole segment magnetized in a direction extending transversely of said gap so as to create a magnetic north pole at a face of the north-pole segment at the gap, said south-pole and north-pole segments being alternately positioned about each array in angularly spaced positions, said permanent magnet segments of each array further including separately magnetized permanent magnet spacer segments magnetized so as to transmit magnetic flux between the angularly spaced south-pole and north-pole segments of each array, said spacer segments filling the annular space between said north-pole and south-pole segments in each of the arrays, means for mounting for rotation one of said first and second arrays so that when said one of said arrays is rotated the other array is caused to rotate in synchronism therewith due to the magnetic flux coupling between each pair of generally opposed north-pole and south-pole segments across the gap, and with each permanent magnet array having an inner annular surface at the gap and an outer annular surface spaced from the gap with the inner annular surface including the north-pole and south-pole faces, each north-pole and south-pole segment being tapered toward said outer annular surface of its array so as to have a relatively large surface area at the gap and a relatively small surface area at the outer annular surface of its array.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×