×

High efficiency electromagnetic beam projector, and systems and methods for implementation thereof

  • US 6,943,949 B2
  • Filed: 11/21/2003
  • Issued: 09/13/2005
  • Est. Priority Date: 06/11/1992
  • Status: Expired due to Fees
First Claim
Patent Images

1. A method of producing one or more collinear beams of electromagnetic energy, comprising:

  • [a] producing four or more separate beams of electromagnetic energy, all of the separate beams of electromagnetic energy having the same selected predetermined orientation of a chosen component of electromagnetic wave field vectors substantially across each beam, a predetermined range of wavelengths and a substantially uniform flux intensity substantially across each beam of electromagnetic energy;

    [b] altering the selected predetermined orientation of the chosen component of the electromagnetic wave field vectors of a plurality of portions of each of the separate beams of electromagnetic energy by passing the plurality of portions of each of the separate beams of electromagnetic energy through a respective one of a plurality of altering means whereby the selected predetermined orientation of the chosen component of the electromagnetic wave field vectors of the plurality of portions of each of the separate beams of electromagnetic energy is altered in response to a stimulus means by applying a signal means to the stimulus means in a predetermined manner as the separate beams of electromagnetic energy passes through the respective one of the plurality of means for altering the selected predetermined orientation of the chosen component of the electromagnetic wave field vectors;

    [c][i] combining at least one of the altered separate beams of electromagnetic energy with at least one of the other altered separate beams of electromagnetic energy into a first single collinear beam of electromagnetic energy without substantially changing the altered selected predetermined orientation of the chosen component of the electromagnetic wave field vectors of the plurality of portions of each of the combined separate beams of electromagnetic energy, and [ii] combining at least one of the altered separate beams of electromagnetic energy with at least one of the other altered separate beams of electromagnetic energy into a second single collinear beam of electromagnetic energy without substantially changing the altered selected predetermined orientation of the chosen component of the electromagnetic wave field vectors of the plurality of portions of each of the combined separate beams of electromagnetic energy;

    [d] [i] resolving from the first single collinear beam of electromagnetic energy a first resolved beam of electromagnetic energy having substantially a first selected predetermined orientation of a chosen component of electromagnetic wave field vectors and a second resolved beam of electromagnetic energy having substantially a second selected predetermined orientation of a chosen component of electromagnetic wave field vectors, and [ii] resolving from the second single collinear beam of electromagnetic energy a first resolved beam of electromagnetic energy having substantially a first selected predetermined orientation of a chosen component of electromagnetic wave field vectors and a second resolved beam of electromagnetic energy having substantially a second selected predetermined orientation of a chosen component of electromagnetic wave field vectors; and

    [e] merging one of the resolved beams of electromagnetic energy from the first single collinear beam of electromagnetic energy with one of the other resolved beams of electromagnetic energy from the second single collinear beam of electromagnetic energy into a third single collinear beam of electromagnetic energy.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×