×

Method of manufacturing a semiconductor device having MEMS

  • US 7,482,196 B2
  • Filed: 01/11/2006
  • Issued: 01/27/2009
  • Est. Priority Date: 09/19/2002
  • Status: Expired due to Fees
First Claim
Patent Images

1. A method of manufacturing a semiconductor device having a MEMS, comprising the steps of:

  • forming an integrated circuit including a processor, a memory, a driving circuit, and a sensor circuit on a semiconductor substrate;

    forming on the semiconductor substrate an interlayer dielectric layer which covers the integrated circuit;

    forming a seed layer on the interlayer dielectric layer;

    forming on the seed layer a first sacrificial pattern having openings in a first region, a plurality of second regions, and a plurality of third regions;

    forming on the seed layer exposed in thefirst, second, and third regions a first metal pattern substantially equal in film thickness to the first sacrificial pattern by plating, and a second metal pattern and a third metal pattern not larger in film thickness than the first metal pattern;

    after forming the first, second, and third metal patterns into predetermined film thicknesses, forming on the first sacrificial pattern and the second and third metal patterns a second sacrificial pattern having an opening in a fourth region on the first metal pattern;

    forming a fourth metal pattern substantially equal in film thickness to the second sacrificial pattern by plating on a surface of the first metal pattern that is exposed in the fourth region;

    after forming the fourth metal pattern into a predetermined film thickness, removing the first and second sacrificial patterns;

    after removing the sacrificial patterns, selectively removing the seed layer by using the first, second, and third metal patterns as a mask, thereby forming a support member from a layered structure of the first and fourth metal patterns, a plurality of control electrodes which are formed from the plurality of second metal patterns and separated from each other on the interlayer dielectric layer, and a plurality of sensor electrodes which are formed from the plurality of thirdmetal patterns and separated from each other on the interlayer dielectric layer;

    preparing a mirror substrate which comprises mirrors in a plurality of opening regions and is formed from a conductive material, the mirrors being pivotally coupled to the mirror substrate via coupling portions; and

    connecting and fixing the mirror substrate onto the support member to arrange the mirrors of the mirror substrate at an interval above the control electrodes and the sensor electrodes,wherein the control electrodes are electrically connected to the driving circuit so as to receive a signal from the driving circuit, andthe sensor electrodes are electrically connected to the sensor circuit so as to output a signal to the sensor circuit.

View all claims
  • 0 Assignments
Timeline View
Assignment View
    ×
    ×