×

Wash chamber for appendage-washing method

  • US 7,901,513 B2
  • Filed: 12/09/2008
  • Issued: 03/08/2011
  • Est. Priority Date: 10/31/2006
  • Status: Active Grant
First Claim
Patent Images

1. A method of at least partially cleaning at least a portion of at least one appendage using an automated cleaning station, comprising:

  • initiating a flow of a first fluid through a fluid inlet disposed on a wash chamber of the automated cleaning station, the wash chamber including an inner member and an outer member, the outer member and inner member each including a cylinder portion and a frusto-conical portion, each frusto-conical portion including a flat surface and a sloped surface, the wash chamber including a first end and a second end, at least one of the first end and the second end connected to the automated cleaning station, the wash chamber including an axis of rotation, the wash chamber including an appendage receiving cavity and an annular cavity, the appendage receiving cavity being located within the inner member, the appendage receiving cavity being accessible through an opening in the first end of the wash chamber and being adapted to receive the at least a portion of the appendage for washing, the annular cavity being located between the inner member and the outer member, the inner member including a first surface and a second surface, the first surface facing the appendage receiving cavity and the second surface facing the annular cavity, wherein the fluid flows into the annular cavity prior to the appendage receiving cavity;

    establishing a fluid pressure within the annular cavity; and

    projecting the first fluid from the annular cavity through a plurality of nozzles and into the appendage receiving cavity, the plurality of nozzles being disposed on the inner member portion and the first fluid being projected as a result of the fluid pressure established within the annular cavity, wherein the nozzles comprise a first, a second and a third set of nozzles;

    wherein the first set of nozzles is disposed on the inner member in a ring proximate to the first end of the wash chamber, wherein each nozzle of the first set nozzles produces a spray that is projected at a pitch angle of between 15 and 35 degrees and at a roll angle of substantially 0 degrees;

    wherein the second set of nozzles is disposed on the inner member in a helical pattern along a length of the cylinder portion of the inner member, the second set of nozzles including a first nozzle located proximate to the opening in the first end of the wash chamber, wherein each nozzle of the second set of nozzles is adapted to produce a spray pattern that is projected at a pitch angle of substantially 0 degrees, wherein a first spray pattern associated with the first nozzle is projected at a first roll angle, wherein a second spray pattern associated with a second nozzle of the second set of nozzles is projected at a second roll angle, the second roll angle steeper than the first roll angle, and wherein a remainder of the second set of nozzles each have a corresponding spray pattern oriented at progressively steeper roll angles;

    wherein the third set of nozzles is disposed on the frusto-conical portion of the inner member; and

    wherein the wash chamber is rotated about the axis of rotation at least during the step of projecting the fluid.

View all claims
  • 3 Assignments
Timeline View
Assignment View
    ×
    ×