×

Semiconductor chip with coil element over passivation layer

  • US 7,985,653 B2
  • Filed: 11/24/2008
  • Issued: 07/26/2011
  • Est. Priority Date: 05/18/2005
  • Status: Active Grant
First Claim
Patent Images

1. A method for fabricating a semiconductor chip, comprising:

  • providing a silicon substrate, multiple transistors in or on said silicon substrate, a first dielectric layer over said silicon substrate, a second dielectric layer over said first dielectric layer, a first metal layer in said second dielectric layer, a third dielectric layer over said second dielectric layer and said first metal layer, wherein said third dielectric layer comprises silicon, carbon and oxygen, and wherein said third dielectric layer comprises a material with a dielectric constant less than 3, a second metal layer in said third dielectric layer, a third metal layer over said third dielectric layer and said second metal layer, a fourth dielectric layer over said third dielectric layer and said second metal layer, wherein said fourth dielectric layer comprises a portion between said second and third metal layers, and a passivation layer over said first, second, third and fourth dielectric layers and said first, second and third metal layers, wherein said passivation layer comprises a nitride layer having a thickness between 0.2 and 1.2 micrometers, wherein said second metal layer comprises an electroplated copper layer and a first adhesion layer, wherein said first adhesion layer is at a sidewall and a bottom of said electroplated copper layer, wherein said electroplated copper layer has a top surface substantially coplanar with a top surface of said third dielectric layer;

    forming a first polymer layer on said passivation layer, wherein said forming said first polymer layer comprises coating a first polymer film with a photosensitive material on said passivation layer, followed by exposing and developing said coated first polymer film, followed by curing said exposed and developed first polymer film to form said first polymer layer, wherein said first polymer layer has a thickness between 5 and 20 micrometers;

    forming a second polymer layer over said first polymer layer, wherein said forming said second polymer layer comprises coating a second polymer film with a photosensitive material over said first polymer layer, followed by exposing and developing said coated second polymer film, followed by curing said exposed and developed second polymer film to form said second polymer layer, wherein said second polymer layer has a thickness between 5 and 20 micrometers, wherein there is no process step of forming a metal layer between said forming said first polymer layer and said forming said second polymer layer; and

    forming a fourth metal layer on said second polymer layer, wherein said forming said fourth metal layer comprises forming a second adhesion layer on said second polymer layer, followed by forming a seed layer on said second adhesion layer, followed by forming a photoresist layer on said seed layer, wherein an opening in said photoresist layer exposes a region of said seed layer, followed by electroplating a fifth metal layer over said region, followed by removing said photoresist layer, followed by removing said seed layer and said second adhesion layer not under said fifth metal layer such that said second adhesion layer is at a bottom of said fifth metal layer but not at a sidewall of said fifth metal layer.

View all claims
  • 3 Assignments
Timeline View
Assignment View
    ×
    ×