×

Solar powered DC load system

  • US 8,004,233 B2
  • Filed: 10/11/2010
  • Issued: 08/23/2011
  • Est. Priority Date: 03/17/2009
  • Status: Active Grant
First Claim
Patent Images

1. The solar powered water pump and an illumination system has the capability to create a combination system by selected circuit(s) or component(s) basically from the battery protection circuits and synchronized day and night cycles for night time DC load system, the combination system includes a type of motor operation having at least a water pumping system combined with an illumination system, the combination system comprising:

  • (a) a battery discharge control circuit comprising a preset voltage that is determined by components of a zener diode and an input of a normally open solid state relay, a nominal voltage that is nominated by at least one rechargeable battery source;

    wherein said components of said preset voltage are connected to each other in series then directly, or through at least one diode in series, coupled to at least one rechargeable battery source in parallel, wherein said preset voltage is substantially equal to or greater than the nominal voltage of said rechargeable battery source,wherein said zener diode has the capability to be replaced by a substitutive component;

    wherein said preset voltage means that when the input voltage drops out of the low end control range of the input of the normally open solid state relay and reaches the preset voltage level, an output of the normally open solid state relay opens up and disconnects at least one type of direct current load to access the rechargeable battery source, the preset voltage is the lowest level that the rechargeable battery source is discharged;

    wherein said rechargeable battery source includes at least one rechargeable battery or at least one rechargeable battery pack;

    (b) a control circuit for night time DC load comprising a predetermined voltage that is determined by at least input of a normally closed solid state relay, which is connected in series to a diode then coupled to, or directly coupled to at least one solar panel in parallel which is synchronizing the day and night cycles for the night time DC load;

    (c) combined a battery output circuit for DC load to a charging battery circuit comprising at least one rechargeable battery source of said battery discharge control circuit connected in parallel to, or through a first diode to an output of said normally open solid state relay of said battery discharge control circuit, at least one type of DC load connected in series to a negative pole/terminal of said output of said normally open solid state relay;

    the at least one system solar panel connected in parallel to and charges the at least one rechargeable battery source through an anti-reverse power diode while connected in parallel directly to, or through said first diode to, said output of said normally open solid state relay of said battery discharge control circuit and said at least one type of DC load;

    wherein said combined battery output circuit for DC load to the charging battery circuit means that the at least one type of DC load may receive a partial or full or non power from the system solar panel or the rechargeable battery source which depends upon the system solar panel output power and the rechargeable battery source capacity and sun light conditions;

    (d) combined a battery output circuit for DC load to an output circuit for night time DC load comprising at least one rechargeable battery source connected in parallel to, or through said first diode, said output of said normally open solid state relay of said battery discharge control circuit, an output of said normally closed solid state relay of said control circuit for night time DC load is connected in series directly or through second diode to a negative pole of said output of said normally open solid state relay, and at least one type of DC load connected directly or indirectly to a negative pole/terminal of said output of said normally closed solid state relay;

    wherein said input of said normally open solid state relay has the capability to be replaced by an input of a functionally interchangeable device, where each of said normally open solid state relay or said functionally interchangeable device has the input of positive and negative control poles/terminals, and the output of positive and negative poles/terminals, wherein said output of said normally open solid state relay has the capability to be replaced by said output of said functionally interchangeable device;

    wherein said input of said normally closed solid state relay has the capability to be replaced by an input of a normally closed device, where each of said solid state relay or said normally closed device has the input of positive and negative control poles/terminals, and the output of positive and negative poles/terminals, wherein said output of said normally closed solid state relay has the capability to be replaced by said output of said normally closed device.

View all claims
  • 0 Assignments
Timeline View
Assignment View
    ×
    ×