×

Synthetic aperture radar process

  • US 8,134,490 B2
  • Filed: 08/08/2008
  • Issued: 03/13/2012
  • Est. Priority Date: 08/30/2007
  • Status: Active Grant
First Claim
Patent Images

1. A synthetic aperture radar method for remote surveillance of the surface of the earth using one or a plurality of carrier platforms moving at a constant speed over the surface of the earth, wherein said one or plurality of carrier platforms comprise a multi-aperture antenna system beam-controllable in the azimuth direction and directed obliquely downwards orthogonally to the moving direction and thus to the azimuth direction and consisting of a transmitting and receiving antenna system, and further comprise a coherently operating radar device periodically transmitting high-frequency transmission pulses at a pulse-repetition frequency via the transmitting antenna system and receiving echo signals via the receiving antenna system, wherein effective azimuth phase centers which are assigned to the received echo signals referred to as scan values, are arranged at a spatial site in the azimuth direction, which spatial site corresponds to the geometric center between the phase center of the transmitting antenna system that is actually electrically active during the transmission of the high-frequency pulses and the phase center of the receiving antenna system that is actually electrically active during the reception of the echo signals,wherein, by a position shift effected from transmission pulse to transmission pulse in the azimuth direction or opposite thereto of the electrically active phase center of the transmitting antenna system designed as a multi-aperture antenna which is beam-controllable in the azimuth direction, and/or of the electrically active phase center of the receiving antenna system designed as a multi-aperture antenna which is beam-controllable in the azimuth direction, the position of the effective azimuth phase center is continuously adapted in such a manner that, at the existing pulse repetition frequency, a substantially equidistant scanning is effected in the azimuth direction.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×