×

Compact, cold, superconducting isochronous cyclotron

  • US 8,558,485 B2
  • Filed: 07/07/2011
  • Issued: 10/15/2013
  • Est. Priority Date: 07/07/2011
  • Status: Active Grant
First Claim
Patent Images

1. A compact, cold, superconducting isochronous cyclotron comprising:

  • at least two superconducting coils that are substantially symmetric about a central axis, wherein the coils are on opposite sides of a median acceleration plane, and wherein the coils have (a) outer surfaces remote from the central axis and (b) opposed median-acceleration-plane-facing surfaces;

    a magnetic yoke having an outer radius measured from the central axis no greater than 36 cm surrounding the coils and in physical contact with the coils across the outer surface of each coil and across the median-acceleration-plane-facing surface of each coil to substantially reduce or eliminate strain on the coils due to decentering forces and without an intervening cryostat between the magnetic yoke and the coils, wherein the magnetic yoke contains at least a portion of a beam chamber, wherein the median acceleration plane extends through the beam chamber, wherein the magnetic yoke includes a plurality of sector pole tips that form hills on each side of the median acceleration plane and valleys between the hills, where the hills and valleys are positioned with a constant sector periodicity that produces an azimuthal variation in the magnetic field generated in the median acceleration plane, wherein the hills are radially separated across the median acceleration plane by a gap that is narrower than a gap that separates the valleys across the median acceleration plane, wherein the superconducting coils and the physically coupled magnetic yoke are configured to generate a radially increasing magnetic field that is at least 6 Tesla at an inner radius for ion introduction and that is at least 7 Tesla at an outer radius for ion extraction in the median acceleration plane when the superconducting coils and the magnetic yoke are cooled to a temperature no greater than 50K and when electric current is passed through the superconducting coils at the coils'"'"' critical current capacity, and wherein the azimuthal variation in the magnetic field produced by the hills and valleys provides a restoring force orthogonal to the median acceleration plane to counter an inherent instability of an ion accelerated by the radially increasing magnetic field;

    a cryogenic refrigerator physically and thermally coupled with the superconducting coils and with the magnetic yoke; and

    a cryostat mounted outside the magnetic yoke and containing the coils and the magnetic yoke inside a thermally insulated volume in which the coils and the magnetic yoke can be maintained at cryogenic temperatures by the cryogenic refrigerator.

View all claims
  • 4 Assignments
Timeline View
Assignment View
    ×
    ×