×

On-axis RF coupler and HOM damper for superconducting accelerator cavities

  • US 8,674,630 B1
  • Filed: 10/27/2012
  • Issued: 03/18/2014
  • Est. Priority Date: 10/27/2012
  • Status: Expired due to Fees
First Claim
Patent Images

1. An on-axis radiofrequency coupler for a particle accelerator having a superconducting cavity comprising:

  • a radiofrequency (rf) waveguide stub operable to receive an rf power signal transmitted through an rf waveguide from a rf power source, said waveguide stub being operable to convert the mode of said rf power signal from a transverse electric (TE) mode into a transverse electromagnetic (TEM) mode, said stub having first and second aligned openings in first and second opposing side walls thereof, respectively, which openings are alignable with the axis of a particle beam line of a superconducting particle accelerator cavity, said waveguide stub further including a ceramic tube connecting said openings in sealing relationship and extending coaxially with said beam line;

    an electrically conductive coupler tube having first and second ends, said coupler tube extending coaxially through said openings in said opposing walls of said waveguide stub and through said ceramic tube, said first end of said coupler tube extending into and being connected to a tubular vacuum bellows assembly affixed to the outside of said first wall of said waveguide stub and centered on said first opening, said bellows assembly including a linear drive translator operable to selectively move said coupler tube in translation coaxially along said axis of said beam line;

    said coupler tube being sized and positioned such that said second end of said coupler tube penetrates a tubular electrically conductive extension of said superconducting cavity by a variable distance determined by the actuation of said drive translator, such that said coupler tube and said tubular extension function as a coaxial transmission line to introduce said rf power signal into said accelerator cavity, and whereby the electromagnetic load in said cavity can be selectively balanced to achieve optimum particle acceleration and energy efficiency.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×