×

Pivot-balanced floating platen lapping machine

  • US 8,696,405 B2
  • Filed: 10/06/2011
  • Issued: 04/15/2014
  • Est. Priority Date: 03/12/2010
  • Status: Expired due to Fees
First Claim
Patent Images

1. An at least three-point, fixed-spindle floating-platen abrading machine comprising:

  • a) at least three rotary spindles having rotatable flat-surfaced spindle-tops that each have a spindle-top axis of rotation at the center of a respective rotatable flat-surfaced spindle-top for each respective rotary spindles;

    b) wherein the at least three spindle-tops'"'"' axes of rotation are perpendicular to the respective spindle-tops'"'"' flat surfaces;

    c) an abrading machine base having a horizontal, nominally-flat top surface and a spindle-circle where the spindle-circle is coincident with the machine base nominally-flat top surface;

    d) wherein the at least three rotary spindles are located with near-equal spacing between the respective at least three of the rotary spindles where the respective at least three spindle-tops'"'"' axes of rotation intersect the machine base spindle-circle and where the respective at least three rotary spindles are mechanically attached to the machine base;

    e) wherein the at least three spindle-tops'"'"' flat surfaces are adjustably alignable to be co-planar with each other;

    f) a rotatable floating abrading platen having a flat annular abrading surface where the floating abrading platen is supported by and is rotationally driven about a floating abrading platen cylindrical-rotation axis located at a cylindrical-rotation center of the floating abrading platen and perpendicular to the rotatable floating abrading platen flat annular abrading surface by a spherical-action rotation device located coincident with the cylindrical-rotation axis of the floating abrading platen where the floating abrading platen spherical-action rotation device restrains the floating abrading platen in a radial direction relative to the floating abrading platen cylindrical-rotation axis where the floating abrading platen cylindrical-rotation axis is nominally concentric with and perpendicular to the machine base spindle-circle where the floating abrading platen spherical-action rotation device has a spherical center of rotation that is coincident with the floating abrading platen cylindrical-rotation axis where the floating abrading platen has a center of mass that is coincident with the floating abrading platen cylindrical-rotation axis;

    g) wherein the floating abrading platen spherical-action rotation device allows spherical motion of the floating abrading platen about the floating abrading platen spherical-action rotation device spherical center of rotation where the flat annular abrading surface of the floating abrading platen that is supported by the floating abrading platen spherical-action rotation device is nominally horizontal; and

    h) a pivot frame that has a pivot frame pivot center, a pivot frame floating abrading platen end and a pivot frame floating abrading platen drive motor end where the pivot frame rotates about a pivot frame rotation axis that intersects the pivot frame pivot center where the pivot frame rotation axis is perpendicular to the length of the pivot frame that extends from the pivot frame floating abrading platen end to the pivot frame floating abrading platen drive motor end where the pivot frame comprises a low friction pivot frame rotation bearing that is concentric with the pivot frame rotation axis;

    i) a platen drive motor is attached to the pivot frame on the pivot frame floating abrading platen drive motor end and a counterbalance weight is attached to the pivot frame on the pivot frame floating abrading platen drive motor end, and a right-angle gearbox having a hollow output platen drive shaft is attached to the pivot frame on the pivot frame floating abrading platen end and the floating abrading platen is attached to the pivot frame on the pivot frame floating abrading platen end and the floating abrading platen spherical-action rotation device is attached to the pivot frame on the pivot frame floating abrading platen end;

    j) the floating abrading platen drive motor is connected to and rotates a platen drive motor drive shaft attached to and rotates a right-angle gearbox input drive shaft and the right-angle gearbox hollow output platen drive shaft is attached to a universal joint attached to a floating abrading platen rotary drive shaft that rotates the floating abrading platen;

    k) wherein the floating abrading platen drive motor and the counterbalance weight are positioned on the pivot frame floating abrading platen drive motor end to act as a counterbalance to the right-angle gearbox, the rotatable floating abrading platen and the floating abrading platen spherical-action rotation device that are positioned on the pivot frame floating abrading platen end wherein the pivot frame is nominally balanced about the pivot frame pivot rotation axis;

    l) flexible abrasive disk articles having annular bands of abrasive coated surfaces where a selected flexible abrasive disk is attached in flat conformal contact with the floating abrading platen flat annular abrading surface such that the attached abrasive disk is concentric with the floating abrading platen flat annular abrading surface;

    m) wherein equal-thickness workpieces having parallel opposed flat workpiece top surfaces and flat workpiece bottom surfaces are attached to the respective at least three spindle-tops where the flat workpiece bottom surfaces are in flat-surfaced contact with the flat surfaces of the respective at least three spindle-tops;

    n) an elevation frame that supports the pivot frame at the pivot frame pivot center where the elevation frame is attached to a linear slide device that is attached to the abrading machine base wherein the elevation frame can be raised and lowered by an elevation frame lift device;

    o) wherein the floating abrading platen can be moved vertically by activating the lift frame lift device to allow the abrasive surface of the flexible abrasive disk that is attached to the floating abrading platen flat annular abrading surface to contact the top surfaces of the workpieces that are attached to the flat surfaces of the respective at least three spindle-tops wherein the at least three rotary spindles provide at least three-point support of the floating abrading platen and wherein the floating abrading platen spherical-action rotation device allows spherical motion of the floating abrading platen about the floating abrading platen spherical-action rotation device spherical center of rotation to provide uniform abrading contact of the abrasive surface of the flexible abrasive disk with the respective workpieces;

    p) a pivot frame locking device that is attached to both the pivot frame and the pivot frame lift frame where the pivot frame locking device can be activated to lock the pivot frame that is rotated about the pivot frame rotation axis at selected pivot frame rotated position;

    q) an abrading contact force device that is attached to both the pivot frame and the pivot frame lift frame where the abrading contact force device can apply an abrading contact force to the pivot frame wherein the pivot frame tends to be rotated about the pivot frame pivot rotation axis where the abrading contact force device applies an abrading contact force to the pivot frame and the pivot frame applies the abrading contact force to the floating abrading platen spherical-action rotation device that is attached to the pivot frame wherein the applied abrading contact force is applied to the floating abrading platen by the floating abrading platen spherical-action rotation device and the applied abrading contact force is applied to the workpieces by the floating abrading platen;

    r) wherein the total floating abrading platen abrading contact force applied to workpieces that are attached to the respective at least three spindle-top flat surfaces by contact of the abrasive surface of the flexible abrasive disk that is attached to the floating abrading platen flat annular abrading surface with the top surfaces of the workpieces is controlled through the floating abrading platen spherical-action floating abrading platen rotation device to allow the total floating abrading platen abrading contact force to be evenly distributed to the workpieces attached to the respective at least three spindle-tops; and

    s) wherein the at least three spindle-tops having attached equal-thickness workpieces can be rotated about the respective spindle-tops'"'"' rotation axes and the floating abrading platen having the attached flexible abrasive disk can be rotated about the floating abrading platen cylindrical-rotation axis to single-side abrade the workpieces that are attached to the flat surfaces of the at least three spindle-tops while the moving abrasive surface of the flexible abrasive disk that is attached to the moving floating abrading platen flat annular abrading surface is in force-controlled abrading contact with the top surfaces of the workpieces that are attached to the respective at least three spindle-tops.

View all claims
  • 0 Assignments
Timeline View
Assignment View
    ×
    ×