×

Excited frame vibratory conveyor

  • US 8,733,540 B2
  • Filed: 10/10/2012
  • Issued: 05/27/2014
  • Est. Priority Date: 10/10/2012
  • Status: Active Grant
First Claim
Patent Images

1. An excited frame vibratory conveyor, comprising:

  • a base frame having spaced, sidewalls, and wherein the sidewalls are vertically disposed, and located in predetermined, spaced relation, one relative to the other, and wherein the sidewalls have inside facing surfaces, opposite first and second ends, and a top and bottom peripheral edge, and wherein the base frame is elongated in shape, and has a longitudinal, transverse and vertical axes;

    a plurality of elongated, planar biasing springs mounted on, and extending upwardly relative to, the respective sidewalls of the base frame, and wherein the plurality of planar biasing springs have a first end which is mounted adjacent to the top peripheral edge of the respective sidewalls, and an opposite, second end which is located upwardly, and in spaced relation relative to the top peripheral edge;

    a vibratory conveyor bed mounted on the respective plurality of the elongated, planar biasing springs, and which is located in predetermined, spaced relation relative to the spaced sidewalls, and wherein the second end of the respective plurality of planar biasing springs are each mounted on the vibratory conveyor bed, and the respective planar biasing springs render the vibratory conveyor bed reciprocally moveable along a predetermined path of travel which is located in substantially parallel, spaced relation relative to the longitudinal axis of the base frame, and wherein the vibratory conveyor bed has a center of mass;

    a motor mount made integral with, and extending therebetween the respective sidewalls of the base frame, and wherein the motor mount has opposite end portions which are substantially vertically oriented, and an intermediate portion which is made integral with the opposite end portions of the motor mount, and which is acutely, angularly oriented relative thereto, and wherein the intermediate portion has an upwardly and a downwardly facing surface, and wherein the intermediate portion of the motor mount is oriented substantially perpendicular relative to the respective planar biasing springs, and wherein the opposite end portions of the motor mount include a first and a third portion, which are substantially identical in shape, and which are further located in predetermined spaced, substantially parallel relationship, one relative to the other, and are further disposed in substantially parallel relationship relative to the transverse axis of the base frame, and wherein each of the first and third portions of the motor mount has opposite ends which are immovably affixed to the inside facing surfaces of the respective spaced sidewalls of the base frame, and wherein the first portion is located in spaced relation relative to the first end of the respective sidewalls of the base frame, and adjacent to the bottom peripheral edge thereof, and wherein the third portion is located between the first and second ends of the respective spaced, sidewalls of the base portion, and adjacent to the top peripheral edge, and wherein the intermediate portion comprises a second portion which is immovably affixed to the respective spaced, sidewalls and affixed to, and located between, the first and third portions of the motor mount;

    a first and second vibratory motors which are selectively energizable, and which individually mount a rotatable eccentric weight which have substantially similar masses, and wherein the respective vibratory motors are individually mounted on the upwardly and downwardly facing surfaces of the intermediate, second portion of the motor mount, and are further located in a substantially horizontal orientation relative to the transverse axis of the base frame, and wherein the respective vibratory motors, when energized, each exert a vibratory force which is directed along a force vector which passes substantially through the center of mass of the vibratory conveyor bed, and which is effective in imparting vibratory motion to the vibratory conveyor bed; and

    an electrical circuit for selectively energizing and deenergizing the respective first and second vibratory motors so as to facilitate the synchronization of the respective vibratory motors, and which further substantially reduces any vertical movement of the base frame which is caused, at least in part, by the non-synchronous rotation of the respective eccentric weights which occurs upon the energizing or deenergizing of the respective first and second vibratory motors.

View all claims
  • 5 Assignments
Timeline View
Assignment View
    ×
    ×